# Mathematical model of the adaptable discharge control system in a tokamak with an iron core

( Pp. 11-20)

More about authors

Andreev Valery F.
doktor fiziko-matematicheskih nauk; fakultet vychislitelnoy matematiki i kibernetiki

Lomonosov Moscow State University Popov Alexander M. doktor fiziko-matematicheskih nauk, professor; fakultet vychislitelnoy matematiki i kibernetiki

Lomonosov Moscow State University

Lomonosov Moscow State University Popov Alexander M. doktor fiziko-matematicheskih nauk, professor; fakultet vychislitelnoy matematiki i kibernetiki

Lomonosov Moscow State University

Abstract:

The previously developed adaptation models of the program regime used the so-called “local” adaptation model, i.e. when the correction of the control currents was carried out at each moment of time regardless of their change at other times. The main element was that the adaptation algorithms used were linear, i.e. are based on the linearization of the Kirchhoff system of equations describing the evolution of the control currents during the discharge. In this paper, an algorithm for “global” adaptation of control currents is proposed. It is based on a mathematical model for controlling the discharge in an iron-core tokamak, taking into account the nonlinear behavior of a ferromagnetic. In this model, the evolution of currents is described by the Kirchhoff equations with nonlinear mutual induction coefficients, and the restrictions on the control currents, voltages, and the equilibrium and stability conditions for the plasma are included in the corresponding discrepancy functional. To find the discharge scenario, the optimal control problem is formulated and solved. The algorithm of “global” adaptation consists in the fact that information about the previous discharges is included in the minimized functional, and then the problem of optimal control is solved and a new program scenario of the discharge and the corresponding control currents and voltages are found. As a result, the model of adaptation of the program regime, first, is nonlinear, i.e. nonlinearized Kirchhoff equations are used to describe the evolution of the control currents, and, secondly, the “global” one, since the correction of all currents is carried out interdependently and consistently during the entire discharge scenario. This approach allows us to redistribute the currents in advance in the critical situation (for example, additional heating) and provide the required program regime. This is especially important in an iron-core tokamak, when the connections between the control currents become highly nonlinear. In this work, using the example of the problem of additional heating for the T-15 tokamak, the work of the “global” adaptation algorithm is demonstrated.

How to Cite:

Andreev V.F., Popov A.M., (2020), MATHEMATICAL MODEL OF THE ADAPTABLE DISCHARGE CONTROL SYSTEM IN A TOKAMAK WITH AN IRON CORE. Computational Nanotechnology, 4 => 11-20. DOI: 10.33693/2313-223X-2020-7-4-11-20

Reference list:

Blum J., Dei Cas R. Static and dynamic control of plasma equilibrium in a tokamak // CH1441-5. 1979. Pp. 1873-1878.

Ward D.J., Jardin S.J., Chen C.Z. Calculation of axisymmetric stability of tokamak plasmas with active and passive feedback // Journal of Comp. Physics. 1993. No. 104. Pp. 221-233.

Isoz P.F., Lister J.B., Marmillod Ph. A hybrid matrix multiplier for control of the TCV tokamak // Proc. 16th Symp. On Fusion Technology. 1264 Oxford, 1990 (1991).

Sharma A.S., Limebeer D.J.N., Jaimoukha L.J.B. Modeling and control of TCV // IEEE Trans. Control Systems Tech. 2005. Vol. 13. P. 356.

Gruber O., Genhardt J., McCarthy P. et al. Position and shape control on ASDEX-UPGRADE // Fusion Technology. 1992. Pp. 1042-1046.

Albanese R., Villone F. The linearized CREATE-L plasma response model for the control of current, position, and shape in tokamaks // Nucl. Fusion. 1998. Vol. 38. P. 723.

Walker M.L., Humphreys D.A., Leuer J. et al. Practical control issues on DIII-D and their relevance for ITER // General Atomics, Engineering Physics Memo, EPM111803a. 2003.

Walker M.L., Humphreys D.A. Valid coordinate systems for linearized plasma shape response models in tokamaks // Fusion Science and Technology. 2006. Vol. 50. Pp. 473-489.

Mitrishkin Y.V., Zenckov S.M., Kartsev N.M. et al. Linear and impulse control systems for plasma unstable vertical position in elongated tokamak // Proc. the 51st IEEE Conference on Decision and Control. Maui. Hawaii. USA. December 10-13, 2012. Pp. 1697-1702.

Zenkov S.M., Mitrishkin YU.V., Fokina E.K. Mnogosvyaznye sistemy upravleniya polozheniem, tokom i formoy plazmy v tokamake T-15 // Problemy upravleniya. 2013. № 4. S. 2-10.

Andreev V.F., Popov A.M. Redutsirovannaya model upravleniya plazmennym razryadom v tokamake s zheleznym serdechnikom // Computational nanotechnogy. 2020. T. 7. № 3. S. 17-28. DOI: 10.33693/2313-223X-2020-7-3-17-28.

SHafranov V.D. Ravnovesie plazmy v magnitnom pole. V kn.: Voprosy teorii plazmy / pod red. M.A. Leontovicha. M.: Gosatomizdat. 1963. Vyp. 2. S. 92-131.

Zakharov L.E., SHafranov V.D. Ravnovesie plazmy s tokom v toroidal nykh sistemakh. V sb.: Voprosy teorii plazmy / pod red. M.A. Leontovicha, B.B. Kadomtseva. M.: Energoizdat. 1982. Vyp. 11. S. 118-235.

Dnestrovskiy YU.N., Kostomarov D.P. V kn.: Vychislitel nye metody v fizike plazmy. M.: Mir. 1974. S. 483-506.

CHernous ko F.L., Banichuk N.V. Variatsionnye zadachi mekhaniki i upravleniya. M.: Nauka. 1973. 238 c.

Pontryagin L.S., Boltyanskiy V.G., Gamkrelidze R.V., Mishchenko E.F. Matematicheskaya teoriya optimal nykh protsessov. M.: Nauka. 1976. 392 c.

Tikhonov A.N., Arsenin V.YA. Metody resheniya nekorrektnykh zadach. M.: Nauka. 1979. 288 c.

Ward D.J., Jardin S.J., Chen C.Z. Calculation of axisymmetric stability of tokamak plasmas with active and passive feedback // Journal of Comp. Physics. 1993. No. 104. Pp. 221-233.

Isoz P.F., Lister J.B., Marmillod Ph. A hybrid matrix multiplier for control of the TCV tokamak // Proc. 16th Symp. On Fusion Technology. 1264 Oxford, 1990 (1991).

Sharma A.S., Limebeer D.J.N., Jaimoukha L.J.B. Modeling and control of TCV // IEEE Trans. Control Systems Tech. 2005. Vol. 13. P. 356.

Gruber O., Genhardt J., McCarthy P. et al. Position and shape control on ASDEX-UPGRADE // Fusion Technology. 1992. Pp. 1042-1046.

Albanese R., Villone F. The linearized CREATE-L plasma response model for the control of current, position, and shape in tokamaks // Nucl. Fusion. 1998. Vol. 38. P. 723.

Walker M.L., Humphreys D.A., Leuer J. et al. Practical control issues on DIII-D and their relevance for ITER // General Atomics, Engineering Physics Memo, EPM111803a. 2003.

Walker M.L., Humphreys D.A. Valid coordinate systems for linearized plasma shape response models in tokamaks // Fusion Science and Technology. 2006. Vol. 50. Pp. 473-489.

Mitrishkin Y.V., Zenckov S.M., Kartsev N.M. et al. Linear and impulse control systems for plasma unstable vertical position in elongated tokamak // Proc. the 51st IEEE Conference on Decision and Control. Maui. Hawaii. USA. December 10-13, 2012. Pp. 1697-1702.

Zenkov S.M., Mitrishkin YU.V., Fokina E.K. Mnogosvyaznye sistemy upravleniya polozheniem, tokom i formoy plazmy v tokamake T-15 // Problemy upravleniya. 2013. № 4. S. 2-10.

Andreev V.F., Popov A.M. Redutsirovannaya model upravleniya plazmennym razryadom v tokamake s zheleznym serdechnikom // Computational nanotechnogy. 2020. T. 7. № 3. S. 17-28. DOI: 10.33693/2313-223X-2020-7-3-17-28.

SHafranov V.D. Ravnovesie plazmy v magnitnom pole. V kn.: Voprosy teorii plazmy / pod red. M.A. Leontovicha. M.: Gosatomizdat. 1963. Vyp. 2. S. 92-131.

Zakharov L.E., SHafranov V.D. Ravnovesie plazmy s tokom v toroidal nykh sistemakh. V sb.: Voprosy teorii plazmy / pod red. M.A. Leontovicha, B.B. Kadomtseva. M.: Energoizdat. 1982. Vyp. 11. S. 118-235.

Dnestrovskiy YU.N., Kostomarov D.P. V kn.: Vychislitel nye metody v fizike plazmy. M.: Mir. 1974. S. 483-506.

CHernous ko F.L., Banichuk N.V. Variatsionnye zadachi mekhaniki i upravleniya. M.: Nauka. 1973. 238 c.

Pontryagin L.S., Boltyanskiy V.G., Gamkrelidze R.V., Mishchenko E.F. Matematicheskaya teoriya optimal nykh protsessov. M.: Nauka. 1976. 392 c.

Tikhonov A.N., Arsenin V.YA. Metody resheniya nekorrektnykh zadach. M.: Nauka. 1979. 288 c.

Keywords:

adaptation of the program regime, iron core, tokamak, inverse problem, optimal control problem.

## Related Articles

DIAGNOSTICS OF THERMONUCLEAR PLASMA Pages: 58-61 Issue №11955

CORRECTION OF TOROIDAL DISPLACEMENT OF DIAGNOSTIC HEAVY ION BEAM

plasma
magnetic confinement
tokamak
stellarator
the sounding of the plasma by heavy ion beam

Show more
DIAGNOSTICS OF THERMONUCLEAR PLASMA Pages: 62-70 Issue №11955

THE STUDY OF THE ELECTRIC POTENTIAL OF MAGNETICALLY CONFINED FUSION PLASMAS

plasma
magnetic confinement
tokamak
stellarator
the sounding of the plasma by heavy ion beam

Show more
PHYSICS OF THERMONUCLEAR PLASMA Pages: 108-113 Issue №11955

GEODESIC ACOUSTIC MODES IN THE TOKAMAKS

plasma
magnetic confinement
tokamak
geodesic acoustic mode
DIN

Show more
DIAGNOSTICS OF THERMONUCLEAR PLASMA Pages: 31-57 Issue №11955

THE EVOLUTION OF THE MATHEMATICAL AND TECHNICAL ASPECTS OF HEAVY ION BEAM PROBE PLASMA DIAGNOSTICS

plasma
magnetic confinement
tokamak
stellarator
the sounding of the plasma by heavy ion beam

Show more
SCIENTIFIC SCHOOL OF PROFESSOR POPOV A.M. Pages: 30-35 Issue №9675

A SEMI-EPIRICAL CRITERION ON COIL CURRENT REQUIREMENT TO CONTROL EDGE LOCALIZED MODES IN TOKAMAK PLASMAS

fusion
tokamak
ELM control
resonant magnetic perturbation
plasma response

Show more
Plasma, high-frequency, microwave and laser technology Pages: 11-20 DOI: 10.33693/2313-223X-2020-7-2-11-20 Issue №16932

Inverse problems of plasma discharge control in a tokamak with iron core

iron core
discharge scenario
program regime
inverse problem

Show more
CALCULATING MATHEMATICS Pages: 16-20 Issue №11955

OPTIMIZATION OF THE ELECTROMAGNETIC DIAGNOSTICS SYSTEM IN THE TOKAMAK INSTALLATION

mathematical modeling
tokamak
electromagnetic diagnostics

Show more
Plasma, high-frequency, microwave and laser technology Pages: 11-22 DOI: 10.33693/2313-223X-2020-7-3-11-22 Issue №17377

Reduced model of plasma discharge control in tokamak with iron core

reduced model
iron core
tokamak
discharge scenario
program regime

Show more