GEODESIC ACOUSTIC MODES IN THE TOKAMAKS
( Pp. 108-113)

More about authors
Zenin VItaly Nikolaevich inzhener otdeleniya tokamakov Kurchatovskogo kompleksa termoyadernoy ener- getiki i plazmennyh tehnologiy NIC «Kurchatovskiy institut», aspirant MFTI
National Research Centre «Kurchatov Institute»; MIPT
For read the full article, please, register or log in
Abstract:
Geodesic Acoustic Modes (GAMs) are important for understanding transport in plasma and hence for thermonuclear fusion development. GAMs are investigated worldwide on the bunch of devices, such as ASDEX-U, TCV, HL-2A, DIII-D etc.This work represents a short review of experimental results obtained on different devices with several diagnostics. These results are compared with results obtained on T-10 tokamak with Heavy Ion Beam Probe (HIBP).Many characteristic GAM features studied on different devices complement and confirm each other reciprocally. There are controversial results about GAM radial structure. This may point to different nature of GAM at various conditions (global and nonglobal one).
How to Cite:
Zenin V.N., (2018), GEODESIC ACOUSTIC MODES IN THE TOKAMAKS. Computational Nanotechnology, 1 => 108-113.
Reference list:
Zhao J., Kosovichev A.G. Torsional Oscillation, Meridional Flows, and Vorticity Inferred in the Upper Convection Zone of the Sun by Time-Distance Helioseismology // Astrophys. J. 2004. Vol. 603, № 2. P. 776-784.
Winsor N., Johnson J.L., Dawson J.M. Geodesic Acoustic Waves in Hydromagnetic Systems // Phys. Fluids. 1968. Vol. 11, № 11. P. 2448.
Diamond P.H. et al. Zonal flows in plasma-a review // Plasma Phys. Control. Fusion. 2005. Vol. 47, № 5. P. R35-R161.
Gurchenko A.D. et al. Turbulence and anomalous tokamak transport control by Geodesic Acoustic Mode // Epl. 2015. Vol. 110, № 5.
Geng K.N. et al. The role of geodesic acoustic mode on reducing the turbulent transport in the edge plasma of tokamak // Phys. Plasmas. 2018. Vol. 25, № 1.
Wagner F. A quarter-century of H-mode studies // Plasma Phys. Control. Fusion. 2007. Vol. 49, № 12B. P. B1-B33.
Xu G.S. et al. First evidence of the role of zonal flows for the L-H transition at marginal input power in the EAST tokamak // Phys. Rev. Lett. 2011. Vol. 107, № 12.
Schmitz L. et al. Role of zonal flow predator-prey oscillations in triggering the transition to H-mode confinement // Phys. Rev. Lett. 2012. Vol. 108, № 15. P. 1-5.
Fujisawa A. et al. Experimental progress on zonal flow physics in toroidal plasmas // Nucl. Fusion. 2007. Vol. 47, № 10. P. S718- S726.
Fujisawa A. A review of zonal flow experiments // Nucl. Fusion. 2009. Vol. 49, № 1. P. 13001.
Wesson J. Tokamaks. Fourth Edi. Oxford University Press, 2011. 800 p.
Anderson J. et al. Electron geodesic acoustic modes in electron temperature gradient mode turbulence // Phys. Plasmas. 2012. Vol. 19, № 8. P. 82305.
Palermo F. et al. Radial acceleration of geodesic acoustic modes in the presence of a temperature gradient // Phys. Plasmas. 2017. Vol. 24, № 7.
Chen W. et al. Observation of energetic-particle-induced GAM and nonlinear interactions between EGAM, BAEs and tearing modes on the HL-2A tokamak // Nucl. Fusion. 2013. Vol. 53, № 11.
Chen L., Qiu Z., Zonca F. Short wavelength geodesic acoustic mode excitation by energetic particles // Phys. Plasmas. 2018. Vol. 25, № 1.
Kolesnichenko Y.I. et al. Manifestations of the geodesic acoustic mode driven by energetic ions in tokamaks // Plasma Phys. Control. Fusion. IOP Publishing, 2016. Vol. 58, № 4. P. 45024.
Wang H. et al. Simulation study of high-frequency energetic particle driven geodesic acoustic mode // Phys. Plasmas. 2015. Vol. 22, № 9.
Coburn J.W., Chen M. Optical emission spectroscopy of reactive plasmas: A method for correlating emission intensities to reactive particle density // J. Appl. Phys. 1980. Vol. 51, № 6. P. 3134-3136.
Conway G.D. et al. Direct measurement of zonal flows and geodesic acoustic mode oscillations in ASDEX Upgrade using Doppler reflectometry // Plasma Phys. Control. Fusion. 2005. Vol. 47, № 8. P. 1165-1185.
Vershkov V.A., Dreval V. V., Soldatov S. V. A three-wave heterodyne correlation reflectometer developed in the T-10 tokamak // Rev. Sci. Instrum. 1999. Vol. 70, № 3. P. 1700-1709.
Dnestrovskij Y.N. et al. Development of Heavy Ion Beam Probe Diagnostics // IEEE Trans. Plasma Sci. 1994. Vol. 22, № 4. P. 310-331.
Solomatin R.Y., Grashin S.A. Investigations of the peripheral plasma by Langmuir probes on the T-10 tokamak // Probl. At. Sci. Technol. Ser. Thermonucl. Fusion. 2017. Vol. 40, № 2. P. 43-49.
Melnikov A.V. et al. Radial homogeneity of geodesic acoustic modes in ohmic discharges with low B in the T-10 tokamak // JETP Lett. 2015. Vol. 100, № 9. P. 555-560.
Melnikov A.V. et al. The features of the global GAM in OH and ECRH plasmas in the T-10 tokamak // Nucl. Fusion. 2015. Vol. 55, № 6. P. 63001.
Melnikov A.V. et al. Investigation of geodesic acoustic mode oscillations in the T-10 tokamak // Plasma Phys. Control. Fusion. 2006. Vol. 48, № 4. P. S87-S110.
Ido T. et al. Geodesic-acoustic-mode in JFT-2M tokamak plasmas // Plasma Phys. Control. Fusion. 2006. Vol. 48, № 4. P. S41-S50.
Kobayashi T. et al. Quantification of Turbulent Driving Forces for the Geodesic Acoustic Mode in the JFT-2M Tokamak // Phys. Rev. Lett. American Physical Society, 2018. Vol. 120, № 4. P. 45002.
Ido T. et al. Strong Destabilization of Stable Modes with a Half- Frequency Associated with Chirping Geodesic Acoustic Modes in the Large Helical Device // Phys. Rev. Lett. 2016. Vol. 116, № 1. P. 1-5.
Melnikov A.V. et al. Investigation of the plasma potential oscillations in the range of geodesic acoustic mode frequencies by heavy ion beam probing in tokamaks // Czechoslov. J. Phys. 2005. Vol. 55, № 3. P. 349-360.
Melnikov A.V. et al. Plasma potential and turbulence dynamics in toroidal devices (survey of T-10 and TJ-II experiments) // Nucl. Fusion. 2011. Vol. 51, № 8. P. 83043.
Conway G.D. et al. Frequency scaling and localization of geodesic acoustic modes in ASDEX Upgrade // Plasma Phys. Control. Fusion. 2008. Vol. 50, № 5. P. 55009.
Simon P. et al. Comparison of experiment and models of geodesic acoustic mode frequency and amplitude geometric scaling in ASDEX Upgrade // Plasma Phys. Control. Fusion. 2016. Vol. 58, № 4. P. 1-24.
Wang G. et al. Multi-field characteristics and eigenmode spatial structure of geodesic acoustic modes in DIII-D L-mode plasmas // Phys. Plasmas. 2013. Vol. 20, № 2011.
De Meijere C.A.A. et al. Complete multi-field characterization of the geodesic acoustic mode in the TCV tokamak // Plasma Phys. Control. Fusion. 2014. Vol. 56, № 7. P. 72001.
Bulanin V.V. et al. GAM observation in the TUMAN-3M tokamak // Plasma Phys. Control. Fusion. IOP Publishing, 2016. Vol. 58, № 4. P. 45006.
Cziegler I. et al. Fluctuating zonal flows in the I-mode regime in Alcator C-Mod // Phys. Plasmas. 2013. Vol. 20, № 5. Xu G.S.,
Wan B.N., Song M. In search of zonal flows using cross-bispectrum analysis in the boundary plasma of the Hefei Tokamak-7 // Phys. Plasmas. 2002. Vol. 9, № 1. P. 150-154.
Yan L.W. et al. Three-dimensional features of GAM zonal fl ws in the HL-2A tokamak // Nucl. Fusion. 2007. Vol. 47, № 12. P. 1673-1681.
Jobes F.C., Hickok R.L. A direct measurement of plasma space potential // Nucl. Fusion. 1970. Vol. 10. P. 195.
Hickok R.L. A Short History of Heavy Ion Beam Probing // IEEE Trans. Plasma Sci. 1994. Vol. 22, № 4. P. 287-290.
Krupnik L.I., Melnikov A.V., Nedselskij I. Development of beam probe diagnostics and recent measurements on the TJ-1 and T-10 tokamaks // Fusion Eng. Des. 1997. Vol. 34-35. P. 639-644.
Krupnik L.I. et al. The heavy ion beam probing development for WEGA stellarator // Fusion Sci. Technol. 2006. Vol. 50, № 2. P. 276-280.
Bugarya V.I. et al. Measurements of plasma column rotation and potential in the TM-4 tokamak // Nucl. Fusion. 1985. Vol. 25, № 12. P. 1707-1717.
Bondarenko I.S. et al. Heavy ion beam probe diagnostics on TJ-1 tokamak and the measurements of the plasma potential and density profiles // Rev. Sci. Instrum. 1997. Vol. 68, № 1. P. 312-315.
Melnikov A.V. et al. Heavy ion beam probe systems for tight aspect ratio tokamaks // Rev. Sci. Instrum. 1997. Vol. 68, № 1. P. 316-319.
Bondarenko I.S. et al. HIBP results on the WEGA Stellarator // Probl. At. Sci. Technol. Ser. Plasma Phys. 2009. Vol. 1, № 15. P. 28-30.
Cabral J.A.C. et al. The Heavy Ion Beam Diagnostic for the Tokamak ISTTOK // IEEE Trans. Plasma Sci. 1994. Vol. 22, № 4. P. 350-358.
Ido T. et al. Development of 6-MeV Heavy Ion Beam Probe on LHD // Fusion Sci. Technol. 2010. Vol. 58, № 1. P. 436-444.
Fujisawa A. et al. Experimental study of the bifurcation nature of the electrostatic potential of a toroidal helical plasma // Phys. Plasmas. 2000. Vol. 7, № 10. P. 4152.
Ido T. et al. Observation of the interaction between the geodesic acoustic mode and ambient fluctuation in the JFT-2M tokamak // Nucl. Fusion. 2006. Vol. 46, № 5. P. 512-520.
Melnikov A.V. et al. Heavy ion beam probing-diagnostics to study potential and turbulence in toroidal plasmas // Nucl. Fusion. 2017. Vol. 57, № 7. P. 72004.
Zenin V.N. et al. Study of poloidal structure of geodesic acoustic modes in the T-10 tokamak with heavy ion beam probing // Probl. At. Sci. Technol. 2014. Vol. 94, № 6. P. 269-271.
Ilgisonis V.I. et al. Global geodesic acoustic mode in a tokamak with positive magnetic shear and a monotonic temperature profile // Plasma Phys. Control. Fusion. 2014. Vol. 56, № 3. P. 35001.
Lakhin V.P., Sorokina E.A. Geodesic acoustic eigenmode for tokamak equilibrium with maximum of local GAM frequency // Phys. Lett. A. Elsevier B.V., 2014. Vol. 378, № 5-6. P. 535-538.
Hamada Y. et al. Zonal flows in the geodesic acoustic mode frequency range in the JIPP T-IIU tokamak plasmas // Nucl. Fusion. 2005. Vol. 45, № 2. P. 81-88.
Gurchenko A.D. et al. Spatial structure of the geodesic acoustic mode in the FT-2 tokamak by upper hybrid resonance Doppler backscattering // Plasma Phys. Control. Fusion. 2013. Vol. 55, № 8. P. 85017.
Keywords:
plasma, magnetic confinement, tokamak, geodesic acoustic mode, DIN, the sounding of the plasma by heavy ion beam.


Related Articles

Issue №17956
Mathematical model of the adaptable discharge control system in a tokamak with an iron core
adaptation of the program regime iron core tokamak inverse problem optimal control problem
Show more
Issue №17377
Reduced model of plasma discharge control in tokamak with iron core
reduced model iron core tokamak discharge scenario program regime
Show more
Issue №9675
THE STUDY OF THE ELECTRIC POTENTIAL OF MAGNETICALLY CONFINED FUSION PLASMAS
plasma magnetic confinement plasma diagnostics by heavy ion beam electric potential geodesic acoustic mode
Show more
Issue №11955
OPTIMIZATION OF THE ELECTROMAGNETIC DIAGNOSTICS SYSTEM IN THE TOKAMAK INSTALLATION
mathematical modeling tokamak electromagnetic diagnostics
Show more
Issue №9675
A SEMI-EPIRICAL CRITERION ON COIL CURRENT REQUIREMENT TO CONTROL EDGE LOCALIZED MODES IN TOKAMAK PLASMAS
fusion tokamak ELM control resonant magnetic perturbation plasma response
Show more
Issue №5291
GETTING FUNCTIONAL MATERIALS BASED ON TUNGSTEN MNOGOKOMPONETNOGO MINERAL
scheelite concentrate high energy density plasma tungsten tungsten carbide
Show more
Issue №11955
THE EVOLUTION OF THE MATHEMATICAL AND TECHNICAL ASPECTS OF HEAVY ION BEAM PROBE PLASMA DIAGNOSTICS
plasma magnetic confinement tokamak stellarator the sounding of the plasma by heavy ion beam
Show more
Issue №11955
CORRECTION OF TOROIDAL DISPLACEMENT OF DIAGNOSTIC HEAVY ION BEAM
plasma magnetic confinement tokamak stellarator the sounding of the plasma by heavy ion beam
Show more
Issue №11955
THE STUDY OF THE ELECTRIC POTENTIAL OF MAGNETICALLY CONFINED FUSION PLASMAS
plasma magnetic confinement tokamak stellarator the sounding of the plasma by heavy ion beam
Show more
Issue №11955
DETERMINATION OF ELECTRONIC TEMPERATURE CHANGE OF PLASMA ON THE EVOLUTION OF SOFT X-RAY AFTER SWITCHING ON/OFF OF THE ECE HEATING IN T-10 TOKAMAK
plasma the electron temperature soft x-ray radiation abilitate the inverse problem
Show more