Atomic and electronic structure of quantum dots on the basis of CdSe
( Pp. 128-137)

More about authors
Zavodinsky Victor G. Dr. Sci. (Phys.-Math.), Professor; leader-researcher
Khabarovsk branch at Institute of Applied Mathematics of the Far Eastern branch of the Russian Academy of Sciences
Khabarovsk, Russian Federation Gorkusha Olga A. Cand. Sci. (Phys.-Math.); senior researcher; Khabarovsk branch at Institute of Applied Mathematics of the Far Eastern branch of the Russian Academy of Sciences; Khabarovsk, Russian Federation
Military Academy of Communications named after Marshal of the Soviet Union S.M. Budyonny
St. Petersburg, Russian Federation
Abstract:
Within the framework of the density functional theory, comparative calculations of the total energy and electronic states of CdnSen nanoparticles with a structure of three types: wurtzite, sphalerite and NaCl were performed. It has been shown that for n ≤ 72, the formation of a NaCl type structure is energetically favorable. However, extrapolation of the energy values per Cd–Se atom pair shows that for n > 130 (corresponding to a size of about 2 nm), wurtzite-type particles can be more advantageous than particles with the NaCl structure. The electronic structure of CdnSen, CdnSn, and ZnnSn nanoparticles, as well as CdSe/CdS and CdSe/CdS/ZnS quantum dots, has been studied. It is shown that the ZnS shell not only increases the band gap of a quantum dot, but also significantly increases the intensity of its emission due to the appearance of electronic states near the band gap.
How to Cite:
Zavodinsky V.G., Gorkusha O.A. Atomic and electronic structure of quantum dots on the basis of CdSe. Computational Nanotechnology. 2023. Vol. 10. No. 1. Pp. 128–137. (In Rus.) DOI: 10.33693/2313-223X-2023-10-1-128-137
Reference list:
Имамов Э.З., Муминов Р.А., Рахимов Р.Х. Анализ эффективности солнечного элемента с наноразмерными гетеропереходами // Computational Nanotechnology. 2021. Т. 8. № 4. С. 42–50.
Haken H. Synergetics. Berlin-Heidelberg: Springer, 1977.
Shchukin V.A., Ledentsov N.N., Kopev P.S., Bimberg D. Spontaneous ordering of arrays of coherent strained islands // Phys. Rev. Lett. 1995. Vol. 75. No. 16. Pp. 2968–2971.
Леденцов Н.Н., Устинов В.М., Иванов С.В. и др. Упорядоченные массивы квантовых точек в полупроводниковых матрицах // УФН. 1996. Т. 166. № 4. С. 423–428.
Имамов Э.З., Муминов Р.А., Рахимов Р.Х. и др. Моделирование электрических свойств солнечного элемента с многими наногетеро-переходами // Computational Nanotechnology. 2022. Т. 9. № 4. C. 70–77.
Чепурнов В.И., Раджапов С.А., Долгополов М.В. и др. Задачи определения эффективности для микроструктур SiC*/Si и контактообразования // Computational Nanotechnology. 2021. № 3. С. 59–68.
Долгополов М.В., Чепурнов В.И., Пузырная Г.В. и др. Экспериментальное исследование полупроводниковых структур источника питания на углероде-14 // Физика волновых процессов и радиотехнические системы. 2019. Т. 22. № 3. С. 55–67.
Физика полупроводниковых преобразователей / под ред. акад. РАН, проф. А.Н. Саурова, чл.-корр. АН Татарстана, проф. С.В. Булярского. М.: РАН, 2018. 280 с.
Раджапов С.А., Раджапов Б.С., Джанклич М. и др. Полупроводниковые детекторы ядерного излучения на основе гетеропереходных структур Al–αGe–pSi–Au для измерения малоинтенсивных ионизирующих излучений // Computational Nanotechnology. 2018. № 3, С. 65–67.
Akimchenko A., Chepurnov V., Dolgopolov M. et al. Betavoltaic device in por-SiC/Si C-Nuclear Energy Converter // EPJ Web of Conferences. 2017. Vol. 158.
Цой Б. Патент в Евразийском патентном ведомстве (EP2405487 A1. 08.30.2012).
Цой Б. Патент во всемирной организации интеллектуальной собственности (№ WO 2011/040838 A2 07.04.2011).
Пикус Г.Е. Основы теории полупроводниковых приборов М.: Наука, 1965. 448 с.
Rawa M., Calasan M., Abusorrah A. et al. Single diode solar cells–improved model and exact current–voltage analytical solution based on Lambert’s W function // Sensors. 2022. No. 22. P. 4173.
Гурская А.В., Долгополов М.В., Раджапов С.А., Чепурнов В.И. Контакты для SiC-преобразователей в диапазоне нано-микроватт // Вестн. Моск. ун-та. Сер. 3. Физ. Астрон. 2023. № 1. C. 2310103.
Чепурнов В.И., Гурская А.В., Долгополов М.В., Латухина Н.В. Способ получения пористого слоя гетероструктуры карбида кремния на подложке кремния. Патент № 2653398, получен 18.05.2018, приоритет 19.07.2016.
Долгополов М.В, Сурнин О.Л., Чепурнов В.И. Устройство генерирования электрического тока посредством преобразования энергии радиохимического бета-распада С-14. Патент РФ № 2714690, опубл. 19.02.2020. Бюл. № 5.
Proshchenko V., Dahnovsky Y. Spectroscopic and electronic structure properties of CdSe nanocrystals: Spheres and cubes. Phys. Chem. Chem. Phys. 2014. No. 16. Pp. 7555 7561.
Neeleshwar S., Chen C.L., Tsai C.B. et al. Size-dependent properties of CdSe quantum dots. Phys. Rev. B: Condens. Matter Mater. Phys. 2005. Vol. 71. No. 201307 (1-4).
Beckstedte M., Kley A., Neugebauer J., Scheffler M. Density functional theory calculations for poly-atomic systems: Electronic structure, static and elastic properties and ab initio molecular dynamic. Comput. Phys. Commun. 1997. No. 107. Pp. 187 205.
Kohn W., Sham J.L. Self-consistent equations including exchange and correlation effects. Phys. Rev. 1965. No. 140. Pp. A1133 A1138.
Fuchs M., Scheffler M. Ab initio pseudopotentials for electronic structure calculations of poly-atomic systems using density functional theory. Comput. Phys. Commun. 1999. No. 119. Pp. 67 165.
Perdew J.P., Wang Y. Accurate and simple density functional for the electronic exchange energy. Phys. Rev. B. 1986. No. 33. Pp. 8800 8802.
Ceperly D.M., Alder B.J. Ground state of the electron gas by a stochastic method. Phys. Rev. Lett. 1980. No. 45. Pp. 566 569.
Perdew J.P., Burke K., Wang Y. Generalized gradient approximation for the exchange-correlation hole of a many electron system. Phys. Rev. B. 1996. No. 54. Pp. 16533 16539.
Hamman D.R. Generalized norm-conserving pseudopotentials. Phys. Rev. B. 1989. No. 40. Pp. 8503 8513.
Troullier N., Martins J.I. Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B. 1991. No. 43. Pp. 1993 2006.
Soltani N., Gharibshahi E., Saion E. Band gap of cubic and hexagonal CdS quantum dots. Experimental and theoretical studies. Chalcogenide Letters. 2012. Vol. 9. No. 7. Pp. 321 328.
Tran T.K., Park W., Tong W. et al. Photoluminescence properties of ZnS epilayers. Journal of Applied Physics. 1997. No. 81 (6). Pp. 2803. DOI: 10.1063/1.363937.
Ong H.C., Chang R.P.H. Optical constants of wurtzite ZnS thin films determined by spectroscopic ellipsometry. Applied Physics Letters. 2001. No. 79 (22). P. 3612. DOI: 10.1063/1.1419229.
Qadri S.B., Skelton E.F., Hsu D. et al. Size-induced transition-temperature reduction in nanoparticles of ZnS. Physical Review B. 1999. No. 60. Pp. 9191 9193.
de Queiroz A.A.A., Mayler M., Soares D.A.W., Franca .J.J. Modeling of ZnS quantum dots synthesis by DFT techniques. Journal of Molecular Structure. 2008. No. 873. Pp. 121 129.
Nazerdeylami Somayeh, Saievar Iranizad Esmaiel, Molaei, Mehdi. Optical properties of synthesized nanoparticles ZnS using methacrylic acid as the capping agent. International Journal of Modern Physics: Conference Series. 2012. Vol. 5. Pp. 127 133. DOI: 10.1142/S2010194512001936
Borah J.P., Barman J., Sarma K.C. Structural and properties of ZnS nanoparticles. Chalcogenide Letters. 2008. Vol. 5. No. 9. Pp. 201 208.
Pathak C.S., Mishra D.D., Agarawala V., Mandal M.K. Mechanochemical synthesis, characterization and optical properties of zinc sulphide nanoparticles. Indian J. Phys. 2012. No. 86 (9). Pp. 777 781. DOI: 10.1007/s12648-012-0133-z.
Keywords:
nanoparticles, cadmium selenide, quantum dots, energy gap, luminescence.


Related Articles

2. MATERIALS SCIENCE AND MATERIALS TECHNOLOGY Pages: 14-17 Issue №10450
ANALYSIS OF THE ROLE OF NANO-OBJECTS IN THE CHEAPER SILICON SOLAR CELLS
solar energy solar cell nanocluster quantum dots nanoscale contact structure
Show more
NANOSTRUCTURED MATERIALS Pages: 196-202 Issue №7894
THE DIFFERENCE BETWEEN THE CONTACT STRUCTURE WITH NANOSIZE INCLUSIONS FROM THE SEMICONDUCTOR PHOTODIODES
solar energy solar cell nanocluster quantum dots nanoscale contact structure
Show more
NANOSTRUCTURED MATERIALS Pages: 203-207 Issue №7894
THE DIFFERENCE BETWEEN THE CONTACT STRUCTURE WITH NANOSIZE INCLUSIONS FROM THE SEMICONDUCTOR PHOTODIODES
solar energy solar cell nanoinclusions quantum dots nanoscale contact structure
Show more
3. NANOSTRUCTURED MATERIALS Pages: 242-249 Issue №7894
THE INFLUENCE OF NATURAL ORGANOGENY («NALCHIKIN») ON STRUCTURES AND STRENGTH OF MIXTURES BASED ON CRYSTALLIZING POLYMERS
nanoparticles soot nalchiki strength deformation
Show more
8. PLASMA, HIGH FREQUENCY, MICROWAVE AND LASER TECHNOLOGIES Pages: 56-60 Issue №9439
UNIQUE OPPORTUNITY TO CREATE CHEAP BUT EFFECTIVE SILICON SOLAR CELLS
solar energy solar cell nanocluster quantum dots nanoscale contact structure
Show more
8. PLASMA, HIGH FREQUENCY, MICROWAVE AND LASER TECHNOLOGIES Pages: 61-64 Issue №9439
UNIQUE OPPORTUNITY TO CREATE CHEAP BUT EFFECTIVE SILICON SOLAR CELLS
solar energy solar cell nanoinclusions quantum dots nanoscale contact structure
Show more