Identification and Extraction of Electrophysical Parameters for Solar Cell Models by Experimental Data
( Pp. 144-160)
More about authors
Dolgopolov Mikhail V.
Samara State Technical University
Samara, Russian Federation Chipura Alexander S. Shishkin Ivan A. postgraduate student; Samara National Research University named after Academician S.P. Korolev; Samara, Russian Federation@gmail.com
Samara State Technical University
Samara, Russian Federation Chipura Alexander S. Shishkin Ivan A. postgraduate student; Samara National Research University named after Academician S.P. Korolev; Samara, Russian Federation@gmail.com
Abstract:
The article summarizes the methodology of identification and extraction of electrophysical characteristics of solar cells for various models based on experimental data and equivalent one-, two-, three-diode circuits. A technique based on computer modeling in the Wolfram Mathematica analytical system and in the Mathcad computer algebra system is proposed. The technique allows to compare theoretical and experimental data and deal with different models in both directions – from experiment to theory and vice versa. Experimental work was also carried out to create solar cells based on porous silicon with antireflection coatings (ZnS, DyF3, ZnS + DyF3) and with SiC/Si heterojunctions. Measurements of the I-V and P-V of experimental photoconverters, as well as their surface resistances from the sides of phosphorus and boron doping on the formation of the p-n-junction, were carried out. The main purpose of the study is to develop a methodology for optimizing solar cells and to present modeling and analysis methods that can be used in the development of photobetaconverters to ensure maximum power.
How to Cite:
Dolgopolov M.V., Chipura A.S., Shishkin I.A. Identification and Extraction of Electrophysical Parameters for Solar Cell Models by Experimental Data. Computational Nanotechnology. 2023. Vol. 10. No. 3. Pp. 144–160. (In Rus.) DOI: 10.33693/2313-223X-2023-10-3-144-160. EDN: TAGTVX
Reference list:
Afanasyev V.P., Terukov E.I., Sherchenkov A.A. Thin-film silicon-based solar cells. 2nd edition. St. Petersburg: Publishing House of St. Petersburg State Electrotechnical University “LETI”, 2011. 168 p.
Koltun M.M. Solar cells. N.S. Lidorenko (ed.). Moscow: Nauka, 1987. 190 p.
Mohammadreza Ebrahimi S., Salahshour E., Malekzadeh M., Gordillo F. Parameters identification of PV solar cells and modules using flexible particle swarm optimization algorithm. Energy. 2019. Vol. 179. Pp. 358–372.
Bonanno F., Capizzi G., Napoli C. et al. A radial basis function neural network based approach for the electrical characteristics estimation of a photovoltaic module. Appl. Energy. 2012. Vol. 97. Pp. 956–961.
Jordehi A.R. Parameter estimation of solar photovoltaic (PV) cells: A review. Renew. Sustain. Energy Rev. 2016. Vol. 61. Pp. 354–371.
Pillai D.S., Rajasekar N. Metaheuristic algorithms for PV parameter identification: A comprehensive review with an application to threshold setting for fault detection in PV systems. Renew. Sustain. Energy Rev. 2018. Vol. 82. Pp. 3503–3525.
Carrero C., Ramirez O., Rodrigez I., Platero C.A. Accurate and fast convergence method for parameter estimation of PV generators based on three main points of the I-V curve. Renew. Energy. 2011. Vol. 36. No. 11. Pp. 2972–2977.
Dolgopolov M.V., Elisov M.V., Rajapov S.A., Chipura A.S. Scaling models of electrical properties of photo- and beta-converters with nano-heterojunctions. Computational Nanotechnology. 2023. Vol. 10. No. 1. Pp. 138–146. (In Rus.)
Ishaque K., Salam Z. An improved modeling method to determine the model parameters of photovoltaic (PV) modules using differential evolution (DE). Sol. Energy. 2011. Vol. 85. Pp. 2349–2359.
Ishaque K., Salam Z., Syafaruddin. A comprehensive MATLAB Simulink PV systemsimulator with partial shading capability based on two-diode model’. Sol. Energy. 2011. Vol. 85. No. 9. Pp. 2217–2227.
Tong N.T., Pora W. A parameter extraction technique exploiting intrinsic properties of solar cells. Appl. Energy. 2016. Vol. 176. P. 104e15.
Chen Y., Sun Y., Meng Z. An improved explicit double-diode model of solar cells: Fitness verification and parameter extraction. Energy Convers. Manag. 2018. Vol. 169. P. 345e58.
Ćalasan M., Abdel Aleem S.H.E., Zobaa A.F. On the root mean square error (RMSE) calculation for parameter estimation of photovoltaic models: A novel exact analytical solution based on Lambert W function. Energy Conversion and Management. 2020. No. 210. P. 112716.
Wolf P., Benda V. Identification of PV solar cells and modules parameters by combining statistical and analytical methods. Solar Energy. 2013. Vol. 93. Pp. 151–157.
Zagrouba M., Sellami A., BouaÏcha M., Ksouri M. Identification of PV solar cells and modules parameters using the genetic algorithms: application to maximum power extraction. Solar Energy. 2010. Vol. 84. Pp. 860–866.
Chaibi Y., Salhi M., El-Jouni A., Essadki A. A new method to extract the equivalent circuit parameters of a photovoltaic panel. Solar Energy. 2018. Vol. 163. Pp. 376–386.
Cheddadi F., Cheddadi Y., Errahimi F., Gaga A. Numerical approach for parameter extraction of a photovoltaic module based on datasheet and five parameters model. International Journal of Digital Signals and Smart Systems. 2021. No. 5. Pp. 167–181.
Cheddadi Y., Cheddadi F., Errahimi F., Es-Sbai N. Extremum Seeking Control-based Global maximum power point tracking algorithm for PV array under partial shading conditions. In: International Conference on Wireless Technologies, Embedded and Intelligent Systems (WITS). Fez, Morocco, 2017. Pp. 1–6.
Fahim S.R., Hasanien H.M., Turky R.A. et al. Comprehensive review of photovoltaic modules models and algorithms used in parameter extraction. Energies. 2022. No. 15.P. 8941.
Rawa M., Calasan M., Abusorrah A, et al. Single diode solar cells-improved model and exact current-voltage analytical solution based on lambert’s W function. Sensors. 2022. No. 22. P. 4173.
Lunin L.S., Pashchenko A.S. Simulation and investigation of the GaAs and GaSb photovoltaic cell performance. Tech. Phys. 2011. No. 56. Pp. 1291–1296. (In Rus.)
Muminov R.A., Imamov E.Z., Rakhimov R.Kh., Askarov M.A. Factors of efficient generation of electricity in a solar cell with nanohetero junctions. Computational Nanotechnology. 2023. Vol. 10. No. 1. Pp. 119–127. (In Rus.)
Imamov E.Z., Muminov R.A., Rakhimov R.Kh. et al. Modeling of the electrical properties of a solar cell with many nano-hetero junctions. Computational Nanotechnology. 2022. Vol. 9. No. 4. Pp. 70–77. (In Rus.)
Latukhina N.V., Lizunkova D.A., Shishkin I.A., Paranin V.D. Optical and electrical properties of single- and double-layer coatings of photosensitive structures with a porous layer. XVI All-Russian Youth Samara Competition-Conference on Optics and Laser Physics: Conference Proceedings. Samara. November 13–17, 2018. Samara: P.N. Lebedev Physical Institute of the Russian Academy of Sciences, 2018. Pp. 136–141.
Gurskaya A.V., Chepurnov V.I., Latukhina N.V., Dolgopolov M.V. Method for obtaining a porous layer of Silicon Carbide heterostructure on a Silicon Substrate. Patent of the Russian Federation No. 2653398 publ. 24.01.2018. Byul. No. 3. priority 19.07.2016.
Pikus G.E. Fundamentals of the theory of semiconductor devices. Moscow: Nauka, 1965. 448 p.
Banwell T. C., Jayakumar A. Exact Analytical Solution for Current Flow Through Diode with Series Resistance. Electronics Lett. 2000. No. 36. Pp. 291–292. –
Latukhina N.V., Lizunkova D.A., Rogozhina G.A., Shishkin I.A. Multilayer structure based porous silicon for solar cells. AIP Conference Proceedings. 2020. No. 2276. Рp. 020039-1–020039-4.
Shishkina D.A., Poluektova N.A., Shishkin I.A. Photovoltaic characteristics of structures with porous silicon obtained by various technological plans. Journal of Physics: Conference Series. 2021. Vol. 2086. No. 1. P. 01210.
Chepurnov V.I., Puzyrnaya G.V., Gurskaya A.V. et al. Experimental investigation of semiconductor structures of the power source based on carbon-14. Physics of Wave Processes and Radio Engineering Systems. 2019. Vol. 22. No. 3. Pp. 55–67. (In Rus.)
Koltun M.M. Solar cells. N.S. Lidorenko (ed.). Moscow: Nauka, 1987. 190 p.
Mohammadreza Ebrahimi S., Salahshour E., Malekzadeh M., Gordillo F. Parameters identification of PV solar cells and modules using flexible particle swarm optimization algorithm. Energy. 2019. Vol. 179. Pp. 358–372.
Bonanno F., Capizzi G., Napoli C. et al. A radial basis function neural network based approach for the electrical characteristics estimation of a photovoltaic module. Appl. Energy. 2012. Vol. 97. Pp. 956–961.
Jordehi A.R. Parameter estimation of solar photovoltaic (PV) cells: A review. Renew. Sustain. Energy Rev. 2016. Vol. 61. Pp. 354–371.
Pillai D.S., Rajasekar N. Metaheuristic algorithms for PV parameter identification: A comprehensive review with an application to threshold setting for fault detection in PV systems. Renew. Sustain. Energy Rev. 2018. Vol. 82. Pp. 3503–3525.
Carrero C., Ramirez O., Rodrigez I., Platero C.A. Accurate and fast convergence method for parameter estimation of PV generators based on three main points of the I-V curve. Renew. Energy. 2011. Vol. 36. No. 11. Pp. 2972–2977.
Dolgopolov M.V., Elisov M.V., Rajapov S.A., Chipura A.S. Scaling models of electrical properties of photo- and beta-converters with nano-heterojunctions. Computational Nanotechnology. 2023. Vol. 10. No. 1. Pp. 138–146. (In Rus.)
Ishaque K., Salam Z. An improved modeling method to determine the model parameters of photovoltaic (PV) modules using differential evolution (DE). Sol. Energy. 2011. Vol. 85. Pp. 2349–2359.
Ishaque K., Salam Z., Syafaruddin. A comprehensive MATLAB Simulink PV systemsimulator with partial shading capability based on two-diode model’. Sol. Energy. 2011. Vol. 85. No. 9. Pp. 2217–2227.
Tong N.T., Pora W. A parameter extraction technique exploiting intrinsic properties of solar cells. Appl. Energy. 2016. Vol. 176. P. 104e15.
Chen Y., Sun Y., Meng Z. An improved explicit double-diode model of solar cells: Fitness verification and parameter extraction. Energy Convers. Manag. 2018. Vol. 169. P. 345e58.
Ćalasan M., Abdel Aleem S.H.E., Zobaa A.F. On the root mean square error (RMSE) calculation for parameter estimation of photovoltaic models: A novel exact analytical solution based on Lambert W function. Energy Conversion and Management. 2020. No. 210. P. 112716.
Wolf P., Benda V. Identification of PV solar cells and modules parameters by combining statistical and analytical methods. Solar Energy. 2013. Vol. 93. Pp. 151–157.
Zagrouba M., Sellami A., BouaÏcha M., Ksouri M. Identification of PV solar cells and modules parameters using the genetic algorithms: application to maximum power extraction. Solar Energy. 2010. Vol. 84. Pp. 860–866.
Chaibi Y., Salhi M., El-Jouni A., Essadki A. A new method to extract the equivalent circuit parameters of a photovoltaic panel. Solar Energy. 2018. Vol. 163. Pp. 376–386.
Cheddadi F., Cheddadi Y., Errahimi F., Gaga A. Numerical approach for parameter extraction of a photovoltaic module based on datasheet and five parameters model. International Journal of Digital Signals and Smart Systems. 2021. No. 5. Pp. 167–181.
Cheddadi Y., Cheddadi F., Errahimi F., Es-Sbai N. Extremum Seeking Control-based Global maximum power point tracking algorithm for PV array under partial shading conditions. In: International Conference on Wireless Technologies, Embedded and Intelligent Systems (WITS). Fez, Morocco, 2017. Pp. 1–6.
Fahim S.R., Hasanien H.M., Turky R.A. et al. Comprehensive review of photovoltaic modules models and algorithms used in parameter extraction. Energies. 2022. No. 15.P. 8941.
Rawa M., Calasan M., Abusorrah A, et al. Single diode solar cells-improved model and exact current-voltage analytical solution based on lambert’s W function. Sensors. 2022. No. 22. P. 4173.
Lunin L.S., Pashchenko A.S. Simulation and investigation of the GaAs and GaSb photovoltaic cell performance. Tech. Phys. 2011. No. 56. Pp. 1291–1296. (In Rus.)
Muminov R.A., Imamov E.Z., Rakhimov R.Kh., Askarov M.A. Factors of efficient generation of electricity in a solar cell with nanohetero junctions. Computational Nanotechnology. 2023. Vol. 10. No. 1. Pp. 119–127. (In Rus.)
Imamov E.Z., Muminov R.A., Rakhimov R.Kh. et al. Modeling of the electrical properties of a solar cell with many nano-hetero junctions. Computational Nanotechnology. 2022. Vol. 9. No. 4. Pp. 70–77. (In Rus.)
Latukhina N.V., Lizunkova D.A., Shishkin I.A., Paranin V.D. Optical and electrical properties of single- and double-layer coatings of photosensitive structures with a porous layer. XVI All-Russian Youth Samara Competition-Conference on Optics and Laser Physics: Conference Proceedings. Samara. November 13–17, 2018. Samara: P.N. Lebedev Physical Institute of the Russian Academy of Sciences, 2018. Pp. 136–141.
Gurskaya A.V., Chepurnov V.I., Latukhina N.V., Dolgopolov M.V. Method for obtaining a porous layer of Silicon Carbide heterostructure on a Silicon Substrate. Patent of the Russian Federation No. 2653398 publ. 24.01.2018. Byul. No. 3. priority 19.07.2016.
Pikus G.E. Fundamentals of the theory of semiconductor devices. Moscow: Nauka, 1965. 448 p.
Banwell T. C., Jayakumar A. Exact Analytical Solution for Current Flow Through Diode with Series Resistance. Electronics Lett. 2000. No. 36. Pp. 291–292. –
Latukhina N.V., Lizunkova D.A., Rogozhina G.A., Shishkin I.A. Multilayer structure based porous silicon for solar cells. AIP Conference Proceedings. 2020. No. 2276. Рp. 020039-1–020039-4.
Shishkina D.A., Poluektova N.A., Shishkin I.A. Photovoltaic characteristics of structures with porous silicon obtained by various technological plans. Journal of Physics: Conference Series. 2021. Vol. 2086. No. 1. P. 01210.
Chepurnov V.I., Puzyrnaya G.V., Gurskaya A.V. et al. Experimental investigation of semiconductor structures of the power source based on carbon-14. Physics of Wave Processes and Radio Engineering Systems. 2019. Vol. 22. No. 3. Pp. 55–67. (In Rus.)
Keywords:
current-voltage characteristic, parameter extraction, solar cells, silicon carbide, porous silicon, single crystal module, mathematical modeling, monocrystalline module, photovoltaic cell, photovoltaic system, energy efficiency, optimization, adaptive control, maximum power point tracking, GMPPT, partial shading condition, extremum seeking control, equivalent circuit.
Related Articles
Multiscale modeling for information control and processing Pages: 11-25 DOI: 10.33693/2313-223X-2021-8-1-11-25 Issue №18588
Application of collaborative filtering methods in the problem of predicting the performance of population optimization algorithms
recommender systems
optimization
evolutionary algorithms
swarm intelligence methods
Show more
4. CIVIL LAW, INTERNATIONAL PRIVATE LAW, HOUSING LAW, FAMILY LAW, CIVIL PROCEDURE, ARBITRATION PROCESS Pages: 103-105 Issue №11188
Optimization of civil proceedings at the stage of preparing the case for trial
optimization
civil proceedings
stage of civil proceedings
preparation of case for trial
Show more
Nanotechnology and Nanomaterials Pages: 70-77 DOI: 10.33693/2313-223X-2022-9-4-70-77 Issue №22517
Modeling of the Electrical Properties of a Solar Cell with Many Nano-hetero Junctions
presumably catastrophic growth
greenhouse effect
carbon dioxide
volt-ampere characteristic
mathematical modeling
Show more
1. NATIONAL ECONOMY AND MANAGEMENT 08.00.05 Pages: 79-83 Issue №17214
Some problems of the development of modern social policy in the Russian Federation
poverty
wealth
income
wage
healthcare
Show more
MATHEMATICAL MODELING, NUMERICAL METHODS AND COMPLEXES OF PROGRAMS Pages: 99-105 DOI: 10.33693/2313-223X-2020-7-1-99-105 Issue №16112
Mathematical modeling of the spread of COVID-19 in Moscow
coronavirus COVID-19
mathematical modeling
logistic equation
epidemic development scenarios
Show more
Elements of Computing Systems Pages: 138-146 DOI: 10.33693/2313-223X-2023-10-1-138-146 Issue №22811
Scaling Models of Electrical Properties of Photo- and Beta-Converters with Nano-Heterojunctions
scaling
nano-heterojunction
current-voltage characteristic
semiconductor converter
mathematical modeling
Show more
Nanotechnology and Nanomaterials Pages: 193-213 DOI: 10.33693/2313-223X-2024-11-1-193-213 Issue №95355
Pulse Tunnel Effect: Fundamentals and Prospects for Application
pulsed tunneling effect
coherent radiation
functional materials
superconductivity
nanomaterials
Show more
5. POWER ENGINEERING Pages: 158-164 Issue №11955
ELECTROMAGNETIC COMPATIBILITY OF POWER TRANSMISSION LINE WITH THE TECHNICAL SYSTEM
electromagnetic compatibility
power line
electromagnetic environment
integral Carson
harmonic current
Show more
MATHEMATICAL, STATISTICAL AND INSTRUMENTAL METHODS OF ECONOMICS Pages: 148-158 Issue №72283
Analysis of E-Commerce Platforms as a Rationale for the Relevance of Developing Uniform Recommendations for Sellers
e-commerce.
mathematical modeling
recommendation systems
marketplaces
e-commerce.
Show more
5. MATHEMATICAL AND INSTRUMENTAL METHODS OF ECONOMICS Pages: 154-165 Issue №18204
Mathematical modeling of the spread of COVID-19 coronavirus epidemic in a number of European, Asian countries, Israel and Russia
mathematical modeling
coronavirus COVID-19
discrete logistic equation
European countries
Asian countries
Show more