# Mathematical modeling of the spread of COVID-19 in Moscow

( Pp. 99-105)

More about authors

Kurkina Elena S.
doktor fiziko-matematicheskih nauk, docent; professor kafedry IKT; veduschiy nauchnyy sotrudnik fakulteta VMK

Mendeleev University of Chemical Technology of Russia; Lomonosow Moscow State University Vasetsky Aleksey M. starshiy prepodavatel kafedry IKT

Mendeleev University of Chemical Technology of Russia Koltsova Eleonora M. Dr. Sci. (Eng.), Professor; Head at the Department of Information Computer Technologies

Mendeleev University of Chemical Technology of Russia

Moscow, Russian Federation

Mendeleev University of Chemical Technology of Russia; Lomonosow Moscow State University Vasetsky Aleksey M. starshiy prepodavatel kafedry IKT

Mendeleev University of Chemical Technology of Russia Koltsova Eleonora M. Dr. Sci. (Eng.), Professor; Head at the Department of Information Computer Technologies

Mendeleev University of Chemical Technology of Russia

Moscow, Russian Federation

Abstract:

To model the spread of COVID-19 coronavirus in Moscow, a discrete logistic equation describing the increase in the number of cases was used. To verify the adequacy of the mathematical model, the simulation results were compared with the spread of coronavirus in China. The parameters of the logistics equation for Moscow on the interval [01.03-08.04] were defined. A comparison of growth rates of the number of infected COVID-19 for a number of European, Asian countries and the USA is given. Four scenarios of the spread of COVID-19 in Moscow were considered. For each scenario, curves of the increase in the number of infected people and graphs of the increase in the total number of cases were obtained, and the dynamics of infection spread by day was studied. Peak times, epidemic periods, the number of infected people at the peak and their growth were determined.

How to Cite:

Kurkina E.S., Vasetsky A.M., Koltsova E.M., (2020), MATHEMATICAL MODELING OF THE SPREAD OF COVID-19 IN MOSCOW. Computational Nanotechnology, 1 => 99-105. DOI: 10.33693/2313-223X-2020-7-1-99-105

Reference list:

Verhulst P.F. Mathematical researches into the law of population growth increase. Nouveaux M moires de l Acad mie Royale des Sciences et Belles-Lettres de Bruxelles. 1845. Vol. 18. Pp. 1-42.

Malthus T.R. An essay on the principle of population as it affects the future improvement of society, with remarks on the speculations of Mr M. Godwin // Condorcet, and other writers. London: J. Johnson. 1798.

Pearl R., Reed L.J. On the rate of growth of the population of the United States since 1790 and its mathematical representation. Proceedings of the National Academy of Sciences of the United States of America. 1920. Vol. 6. No. 6. P. 275.

Riznichenko G.YU. Matematicheskie modeli v biologii. M.- Izhevsk: RKHD. 2002.

Riznichenko G.YU., Rubin A.B. Matematicheskie metody v biologii i ekologii. Biofizicheskaya dinamika produktsionnykh protsessov: uchebnik dlya bakalavriata i magistratury. V 2 ch. CH. 2. 3-e izd., pererab. i dop. M.: YUrayt, 2018. 185 s. (Seriya: Universitety Rossii).

Cherniha R., Davydovych V. A mathematical model for the coronavirus COVID-19 outbreak. arXiv preprint arXiv: 2004.01487. 2020.

Qi C. et al. Model studies on the COVID-19 pandemic in Sweden. arXiv preprint arXiv: 2004.01575. 2020.

Feygenbaum M. Universal nost v povedenii nelineynykh sistem // Uspekhi fizicheskikh nauk. 1983. T. 141. № 10. S. 343-374.

Kol tsova E.M., Gordeev L.S. Metody sinergetiki v khimii i khimicheskoy tekhnologii. M.: KHimiya, 1999. 256 c.

Kol tsova E.M., Tret yakov YU.D., Gordeev L.S., Vertegel A.A. Nelineynaya dinamika i termodinamika neobratimykh protsessov v khimii i khimicheskoy tekhnologii. M.: KHimiya, 2001.

URL:htt s://en.wikipedia.org/wiki/Template:2019 E2 80 9320 coronavirus pandemic data/Mainland China medical cases

URL: https://www.worldometers.info/coronavirus/

URL: https://ncov.blog/countries/ru/77/

Malthus T.R. An essay on the principle of population as it affects the future improvement of society, with remarks on the speculations of Mr M. Godwin // Condorcet, and other writers. London: J. Johnson. 1798.

Pearl R., Reed L.J. On the rate of growth of the population of the United States since 1790 and its mathematical representation. Proceedings of the National Academy of Sciences of the United States of America. 1920. Vol. 6. No. 6. P. 275.

Riznichenko G.YU. Matematicheskie modeli v biologii. M.- Izhevsk: RKHD. 2002.

Riznichenko G.YU., Rubin A.B. Matematicheskie metody v biologii i ekologii. Biofizicheskaya dinamika produktsionnykh protsessov: uchebnik dlya bakalavriata i magistratury. V 2 ch. CH. 2. 3-e izd., pererab. i dop. M.: YUrayt, 2018. 185 s. (Seriya: Universitety Rossii).

Cherniha R., Davydovych V. A mathematical model for the coronavirus COVID-19 outbreak. arXiv preprint arXiv: 2004.01487. 2020.

Qi C. et al. Model studies on the COVID-19 pandemic in Sweden. arXiv preprint arXiv: 2004.01575. 2020.

Feygenbaum M. Universal nost v povedenii nelineynykh sistem // Uspekhi fizicheskikh nauk. 1983. T. 141. № 10. S. 343-374.

Kol tsova E.M., Gordeev L.S. Metody sinergetiki v khimii i khimicheskoy tekhnologii. M.: KHimiya, 1999. 256 c.

Kol tsova E.M., Tret yakov YU.D., Gordeev L.S., Vertegel A.A. Nelineynaya dinamika i termodinamika neobratimykh protsessov v khimii i khimicheskoy tekhnologii. M.: KHimiya, 2001.

URL:htt s://en.wikipedia.org/wiki/Template:2019 E2 80 9320 coronavirus pandemic data/Mainland China medical cases

URL: https://www.worldometers.info/coronavirus/

URL: https://ncov.blog/countries/ru/77/

Keywords:

coronavirus COVID-19, mathematical modeling, logistic equation, epidemic development scenarios.

## Related Articles

4. MATHEMATICAL AND INSTRUMENTAL METHODS OF ECONOMICS 08.00.13 Pages: 61-68 Issue №16787

Mathematical modeling of the spread of the coronavirus epidemic in the world and countries with the highest number of infected in the first half of 2020

pandemic
coronavirus COVID-19
epidemic spread in the world
mathematical modeling coronavirus COVID-19
mathematical modeling

Show more
Nanotechnology and Nanomaterials Pages: 70-77 DOI: 10.33693/2313-223X-2022-9-4-70-77 Issue №22517

Modeling of the Electrical Properties of a Solar Cell with Many Nano-hetero Junctions

presumably catastrophic growth
greenhouse effect
carbon dioxide
volt-ampere characteristic
mathematical modeling

Show more
5. MATHEMATICAL AND INSTRUMENTAL METHODS OF ECONOMICS Pages: 154-165 Issue №18204

Mathematical modeling of the spread of COVID-19 coronavirus epidemic in a number of European, Asian countries, Israel and Russia

mathematical modeling
coronavirus COVID-19
discrete logistic equation
European countries
Asian countries

Show more
17. MATHEMATICAL METHODS AND INFORMATION TECHNOLOGIES Pages: 240-244 Issue №4641

Mathematical models of analysis of the risk that arise from mergers of aerospace industry enterprises

risks
mathematical modeling
high-tech industries
the enterprise RCP
simulation

Show more
2. MATHEMATICAL MODELING, NUMERICAL METHODS AND COMPLEX PROGRAMS Pages: 52-57 Issue №9675

THE THEORY OF HIERARCHICAL GAMES AND APPLICATION FOR LAW-MAKING PROCESS IN DIGITAL SOCIETY

the theory of hierarchical games
lawmaking
a systematic approach
support decision-making
mathematical modeling

Show more
2. COMPUTATIONAL ALGORITHMS FOR SIMULATION IN NANOTECHNOLOGIES Pages: 20-30 Issue №5121

CALCULATION OF ACTIVE FRACTIONS SIZES IN SUPPORTED NANOCRYSTALS

Nanocrystals
the size of nanoparticles
mathematical modeling
border
catalysts

Show more
CALCULATING MATHEMATICS Pages: 9-15 Issue №11955

SIMULATION OF THERMONUCLEAR PLASMA INSTABILITIES USING THREE-DIMENSIONAL NONLINEAR CODE NFTC

mathematical modeling
nonlinear MHD equations
plasma instability
thermonuclear devices
mathematical modeling

Show more
CALCULATING MATHEMATICS Pages: 16-20 Issue №11955

OPTIMIZATION OF THE ELECTROMAGNETIC DIAGNOSTICS SYSTEM IN THE TOKAMAK INSTALLATION

mathematical modeling
tokamak
electromagnetic diagnostics

Show more
SCIENTIFIC SCHOOL OF PROFESSOR POPOV A.M. Pages: 24-29 Issue №9675

ANALYSIS OF THE INITIAL STAGE OF THE DISCHARGE SCENARIO ON T-15 TOKAMAK

mathematical modeling
tokamak T-15
script category

Show more
1. Mathematical modeling Pages: 7-13 Issue №10450

PARALLEL SIMULATIONS OF ELECTRIC FIELDS IN MASS-SPECTROMETER TRAP FOR INCREASING OF IONS MASSES MEASUREMENTS ACCURACY

mathematical modeling
parallel computing
the mass spectrometer
the behavior of ion clouds

Show more