ON THE WAY TO MODELING LARGE NANOSYSTEMS AT THE ATOMIC LEVEL
( Pp. 11-16)

More about authors
Zavodinsky Victor G. doktor fizikomatematicheskih nauk, professor; veduschiy nauchnyy sotrudnik
Institute of Applied Mathematics of the Russian Academy of Sciences
Khabarovsk, Russian Federation Gorkusha Olga A. kandidat fizikomatematicheskih nauk; starshiy nauchnyy sotrudnik
Institute of Applied Mathematics of the Russian Academy of Sciences
Khabarovsk, Russian Federation
For read the full article, please, register or log in
Abstract:
It is shown that the variation principle can be used as a practical way to find the electron density and the total energy in the frame of the density functional theory without solving of the Kohn-Sham equation (so called orbital-free approach). On examples of dimers Na 2, Al 2, Si 2, P 2, K 2, Ga 2, Ge 2 and As 2 the equilibrium interatomic distances and binding energies were calculated in good comparison with published data. Results for Si-Al, Si-P, and Al-P dimers are close to results of Kohn-Sham calculations
How to Cite:
Zavodinsky V.G., Gorkusha O.A., (2014), ON THE WAY TO MODELING LARGE NANOSYSTEMS AT THE ATOMIC LEVEL. Computational Nanotechnology, 1: 11-16.
Reference list:
H. Hohenberg and W. Kohn, Inhomogeneous electron gas, Phys. Rev. 136, B864 (1964).
W. Kohn and J.L. Sham, Quantum Density Oscillations in an Inhomogeneous Electron Gas/ Phys. Rev. 140, A1133 (1965).
Y. A. Wang and E. A. Carter. Orbital-free kinetic-energy densi- ty functional theory. in Progress in Theoretical Chemistry and Physics, quot; edited by S. D. Schwartz, Kluwer, Dordrecht, 2000. P. 117.
Huajie Chen and Aihui Zhou. Orbital-Free Density Functional Theory for Molecular Structure Calculations. Numer. Math. Theor. Meth. Appl., 1, 1 (2008).
Baojing Zhou, Vincent L. Ligneres, and Emily A. Carter. Im- proving the orbital-free density functional theory description of covalent materials. J. Chem. Phys. 122, 044103 (2005).
L. Hung, E.A. Carter. Accurate simulations of metals at the mesoscale: Explicit treatment of 1 million atoms with quantum mechanics. Chem. Phys. Lett. 475, 163 (2009).
V.V. Karasiev, S.B. Trickey. Issues and challenges in orbitalfree density functional calculations. Computer Phys. Commun. 183, 2519 (2012).
V.V. Karasiev, D. Chakraborty, O.A. Shukruto, and S.B. Trick- ey. Nonempirical generalized gradient approximation free- energy functional for orbital-free simulations. Phys. Rev. B 88, 161108(R) (2013).
T.A. Wesolowski. Approximating the kinetic energy functional Ts : lessons from four-electron systems. Mol. Phys. 103, 1165 (2005).
AlnN clusters: A transition from nonmetallic to metallic character. Phys. Rev. B. - 1998. - Vol. 57. - P. 3787-790.
K. Raghavachari, V. Logovinsky. Structure and bonding in small silicon clusters. Phys. Rev. Lett. 1985. 55 (26), 2853-2856.
Bai Yu-Lin, Chen Xiang-Rong, Yang Xiang-Dong, Lu Peng-Fei. Structures of small sulfur clusters Sn (n 2-8) from Langevin molecular dynamics methods. Acta Phys.-Chim. Sin. 2003, 19(12), 1102-1107.
J.A. Kerr in CRC Handbook of Chemistry and Physics 1999- 2000 : A Ready-Reference Book of Chemical and Physical Data (CRC Handbook of Chemistry and Physics, D.R. Lide, (ed.), CRC Press, Boca Raton, Florida, USA, 81st edition, 2000.
Jeffrey W. Mirick, Chang-Hong Chien, and Estela Blaisten- Barojas. Electronic structure of calcium clusters. Phys. Rev. A, 2001, 63, 023202(9).
Salem A. Hameed. Ab-Initio Calculations of the Dissociation Energy and Periodic Properties of the Heavy P-block Dimers. J. King Abulaziz University (JKAU): Sci., 21(2), 227-240, (2009).
Keywords:
modeling, the density functional, butalbitalin approach, dimers.