MECHANICAL PROPERTIES OF NANOSCALE COATINGS ON THE BASE OF TI, TIN И ZRN
( Pp. 146-150)

More about authors
Zavodinsky Victor G. doktor fizikomatematicheskih nauk, professor; veduschiy nauchnyy sotrudnik
Institute of Applied Mathematics of the Russian Academy of Sciences
Khabarovsk, Russian Federation Kabaldin Yuri Georgievich doktor tehn. nauk, professor
Nizhny Novgorod State Technical University
For read the full article, please, register or log in
Abstract:
Mechanical properties of TiN/ZrN and TiN/Ti/ZrN coatings used for protection of cutting tools and other details and construction from wear and corrosion are studied in the framework of the density functional theory and the theory of pseudopotentials. Calculations have shown that the Young’s module of the TiN/Ti/ZrN coatings is approximately twice larger than the Young’s module of the TiN/ZrN coatings, while the shear module a little less. That fact can lead at the same time to increasing of their hardnessand to decreasing of fragility.Simulation of surface stretching of the TiN/ZrN and TiN/Ti/ZrN coatings had shown that the surface of the TiN/Ti/ZrN system is much stronger than that of TiN/ZrN. Its break comes at twice bigger lengthening and at twice bigger applied force. Therefore, TiN/Ti/ZrN coatings are much more crac k- stable than TiN/ZrN coatings.
How to Cite:
Zavodinsky V.G., Kabaldin Y.G., (2018), MECHANICAL PROPERTIES OF NANOSCALE COATINGS ON THE BASE OF TI, TIN И ZRN. Computational Nanotechnology, 1: 146-150.
Reference list:
Devia A., Benavides V., Restrepo E., Arias D.F., Ospina R. Influence substrate temperature on structural properties of TiN/TiC bilayers produced by pulsed arc techniques // J. Vacuum. 81 (3), 2006. Rr. 378-384.
Zhang J., Xue Q., Li S. Microstructure and corrosion behavior of TiC/Ti(CN)/TiN multilayer CVD coatings on high strength steels // J. Appl. Surf. Sci. 280, 2013. Rr. 626-631.
Arias D.F., Arango Y.C., Devia A. Study of TiN and ZrN thin films grown by cathodic arc technique // J. Appl. Surf. Sci. 253 (4), 2006. Rr. 1683-1690.
Lin S., Zhou K., Dai M., Hu F., Shi Q., Hou H., et al. Effects of surface roughness of substrate on properti of Ti/TiN/Zr/ZrN multi yer coati // J. Trans. Nonferrous Metals Soc. China. 25(2), 2015. Rr. 451-456.
Azadi M., Rouhaghdam A.S., Ahangarani S., Mofidi H.H. Mechanical behavior of TiN/TiC multilayer coatings fabricated by plasma assisted chemical vapor deposition on AISI H13 hot work tool steel // J. Surf. Coat. Technol. 245, 2014. Rr. 156-166.
Pradhaban G., Kuppusami P., Ramachandran D., Viswanathan K., Ramaseshan R. Nanomechanical properties of TiN/ZrN multilayers prepared by pulsed laser deposition // J. Mater. Today - Proc. 3 (6), 2016. Rr. 1627-1632.
Sevidova E.K., Gutsalenko Yu.G., Kryukova N.V. Increase in wear resistance of surface nanostructural coatings // Elektronnaya obrabotka materialov. 50 (3), 2014. Rr. 92-94 (in Russian).
Sobol O.V., Andreev A.A., Stolbovoy V.A., Gorban V.F., Pinchuk N.V., Meylekhov A.A. The influence of the bias potential on the phase composition, structure, substructure and mechanical properties of multilayer TiN/ZrN system obtained by vacuum arc evaporation // J. Nano-Electron. Phys. 7 (2)2, 2015. Rr. 02035-02041.
Tokarev O.A., Demchyshyn A.V., Avtonomov G.A. The structure and mechanical properties of multilayer nanocrystalline TiN/ZrN coatings obtained by vacuumarc deposition // Processing Applic. Ceram. 1, 2007. Rr. 43-47.
T r k E., Perry A.J., Challet L., Sproul W.D. Young s modulus of TiN, TiC, ZrN and HfN // Thin Solid Films. 153 (1-3), 1987. Rr. 37-43.
Belous V.A., Leonov S.A., Nosov G.I., Khoroshikh V.M., Tolmatcheva G.N., Klimenko I.O. Modyfication of the Zr1Nb alloy surface by sedimentation of multilayered Ti/TiN and Zr/ZrN coatings // Phys. Surf. Engineer. 13 (1), 2015. Rr. 51-56.
Wang S., Liu Z., Yang X., Fan X., Chen B., Zhang J., et al. First principles study of the TiN(111)/ZrN(111) interface // Surf. Interface Anal. 1-7, 2017. DOI: 10.1002/sia.6371.
Beckstedte M., Kley A., Neugebauer J., Scheffler M. Density functional theory calculations for poly-atomic systems: electronic structure, static and elastic properties and ab initio molecular dynamic // Comput. Phys. Commun. 107, 1997. Rr. 187-205.
Kohn W., Sham J.L. Self-consistent equations including exchange and correlation effects // Phys. Rev. 140, 1965. A1133-A1138.
Cohen M.L., Heine V. Pseudopotential theory of cohesion and structure. In: Ehrenreich H., Seitz F., Turnbull D., editors // Solid State Physics. 24, 1970. New York: Academic Pres. Rr. 38-249.
Fuchs M., Scheffler M. Ab initio pseudopotentials for electronic structure calculations of poly-atomic systems using density functional. theory // Computat. Phys. Commun. 119, 1999. Rr. 67-165.
Monkhorst H.J., Pack J.D. Special points for Brilloin-zone integration // Phys. Rev. B. 13, 1976. Rr. 5188-5192.
Perdew J.P., Wang Y. Accurate and simple density functi - al. for the electronic exchange energy // Phys. Rev. B. 33, 1986. Rr. 8800-8802.
Murnagham F.D. The compressibility of media under extreme pressures // Proc. Natl. Acad. Sci. USA. 30, 1944. Rr. 244-247.
Arias D.F., Arango Y.C., Devia A. Study of TiN and ZrN thin films grown by cathodic arc technique // J. Appl. Surf. Sci. 253 (4), 2006. Rr. 1683-1690.
Wolf W., Podloucky R., Antretter T., Fischer E.D., First-principles study of elastic and thermal properties of refractory carbides and nitrides // Philos. Mag. B. 79, 1999. Rr. 839-858.
Kim J.O., Achenbach J.D., Mirkarimi P.B., Shinn M., Barnett S.A. Elastic constants of single-crystal transition-metal nitride films measured by line-focus acoustic microscopy // J. Appl. Phys. 72, 1992. R. 1805; https://doi.org/10.1063/1.351651.
Liu Z.T.Y., Burton B.P., Khare S.V., Gall D. First-principles phase diagram calculations for the rocksalt-structure quasibinary systems TiN-ZrN, TiN-HfN and ZrN-HfN // J. Phys. Condens. Matter. 29, 2017. R. 035401; https://doi.org/10.1088/0953-8984/29/3/035401.
Zhao L.R., Chen K., Yang Q., Rofgers J.B., Chiou S.H. Materials informatics for the design of novel coatings // Surf. Coat. Technol. 200, 2005. Rr. 1595-1599. Liu L.M.,
Wang S.Q., Ye H.Q. First-principles study of metal/ nitride polar interfaces: Ti/TiN // Surf. Interface Anal. 35, 2003. Rr. 835-841.
Zavodinsky V.G. Mechanical properties of nanoscale cobalt binder layers in hard WC/Co alloys // Mekhanika kompozitsionnykh materialov i konstruktsii. 17 (2), 2011. Rr. 177-183 (in Russian).
Keywords:
the young's modulus, the shear modulus, modeling, tensile surface, cracked.