Efficiency determination problems for SiC*/Si microstructures and contact formation
( Pp. 59-68)

More about authors
Chepurnov Viktor I. Radzhapov Sali A.
Institute of Physics and Technology of the Scientific and Production Association “Physics-Sun” of the Academy of Sciences of the Republic of Uzbekistan
Tashkent, Republic of Uzbekistan Dolgopolov Mikhail V.
Samara State Technical University
Samara, Russian Federation Puzyrnaya Galina V. inzhener 1 kategorii kafedry fiziki tverdogo tela i neravnovesnyh sistem
Samara National Research University named after Academician S.P. Korolev
Samara, Russian Federation Gurskaya Albina V. kandidat fiziko-matematicheskih nauk; docent kafedry vysshey matematiki; starshiy nauchnyy sotrudnik
Samara State Technical University; Interuniversity Research Center for Theoretical Materials Science
Samara, Russian Federation
Abstract:
The paper discusses the efficiency of converting radionuclide energy into electrical energy inside a semiconductor structure in the context of the betavoltaic application. In the molecular composition of Silicon Carbide semiconductor structures, Carbon-14 atoms functionally serve as the source of radiochemical decay energy, and the conductivity component of the n- or p-type semiconductor structure is able to directly convert this energy into electrical form. The proposed version of the beta-converter based on the C-14 radionuclide has a worldwide novelty, since this radionuclide is used in the concentration at the level of an alloying impurity that replaces the stable Carbon-12 atoms in the Silicon Carbide molecule. The presence in small quantities, one atom of the radioisotope C-14 per thousand or even a million atoms of the stable radioisotope C-12, gives the semiconductor material new energy-useful properties. The manifestations of the betavoltaic effect when replacing Silicon Carbide C-12 with radionuclide C-14 in a molecule determine the efficiency and choice of the contact formation options for practical use of charge generation in Silicon Carbide heterostructures.
How to Cite:
Chepurnov V.I., Radzhapov S.A., Dolgopolov M.V., Puzyrnaya G.V., Gurskaya A.V., (2021), EFFICIENCY DETERMINATION PROBLEMS FOR SIC*/SI MICROSTRUCTURES AND CONTACT FORMATION. Computational Nanotechnology, 3 => 59-68.
Reference list:
Rappaport P. The electron-voltaic effect in p-n-junctions induced by beta-particle bombardment // Physical Review. 1954. Vol. 93 (1). Pp. 246-247.
Olsen L.C., Seeman S.E., Griffen B.I. Betavoltaic nuclear electric power sources // Trans. Electron Devices. 1969. Vol. 12. 481 p.
Gusev V.V. et al. Features of the conversion of radioactive decay energy into electrical energy using silicon semiconductors with a p-n junction. Radiacionnaya tekhnika. 1975. No. 11. Pp. 61-67. (In Rus.)
Lazarenko YU.V., Pustovalov A.A., Napovalov V.P. Small-sized nuclear power sources. Мoscow: Energoatomizdat, 1992.
SityLabs sayt . URL: http://www.citylabs.net
Patent of the Russian Federation RU No. 2461915 IPC.H01L 31/04 “Nuclear battery”.
RF Patent No. 2452060 IPC.H01L 31/04 G01H 1/00 “Semiconductor converter of beta radiation into electricity”.
Luchinin V., Tairov Yu. Domestic semiconductor silicon carbide: A step towards parity. Sovremennaya elektronika. 2009. No. 7. Pp. 12-15. (In Rus.)
Krasnov A.A., Troshchiev S.Y. Synthetic diamond betavoltaic element design and electrical evaluation. Electronic engineering. Series 2: Semiconductor devices. 2016. No. 2 (241). Pp. 21-31. (In Rus.)
Abanin I.E. Selection of active layers for a power supply device with p-n-junction excited by β-radiation. Nano- and microsystems technology. 2015. No. 10 (183). Pp. 3-10. (In Rus.)
Gorbatsevich A.A. et al. Analysis (simulation) of Ni-63 beta-voltaic cells based on silicon solar cells. Technical Physics. 2016. No. 61 (7). Pp. 1053-1059. (In Rus.)
Bulyarskiy S.V. et al. Optimization of the parameters of power sources excited by β-radiation. Semiconductors. 2017. No. 51 (1). Pp. 66-72. (In Rus.)
Nagornov Y.S. The calculation of the efficiency of batteriesbased on microchannel silicon and Nickel-63 as a beta-source. Izvestiya vysshih uchebnyh zavedenij. Povolzhskij region. Fiziko-matematicheskie nauki. 2013. No. 3 (27). Pp. 136-145. (In Rus.)
Nagornov Y.S., Murashev V.N. Simulation of the -voltaic effect in silicon pin structures irradiated with electrons from a Nickel-63 source // Semiconductors. 2016. Vol. 50 (1). Pp. 16-21.
Nagornov Y.S Modeling of betavoltaics elements on the Nickel-63 isotope. Ulyamovsk. 2015.
Bulyarskiy S.V. et al. Open circuit voltage of the beta-cells based on silicon p-i-n diodes. Nano- and microsystems technology. 2016. No. 18 (6). Pp. 391-400. (In Rus.)
Katz D., Akiyama T. Pacemaker longevity: The world s longest-lasting VVI Pacemaker // Annals of Noninvasive Electrocardiology. 2017. Vol. 12 (3). Pp. 223-226.
Akulshin Yu.D., Lurie M.S., Piatyshev E.N. et al. Beta-voltaic mems converter. St. Petersburg Polytechnical University Journal. Computer Science. Telecommunication and Control Sys. 2014. No. 5 (205). Pp. 35-42. (In Rus.)
Dreizler R., Gross E. Density functional theory. New York: Plenum Press, 1995.
Koch W., Holthausen M.C. A chemist s guide to density functional theory. Weinheim: Wiley-VCH, 2002.
Jiang Z. et al. Ab initio calculation of SiC polytypes // Solid State Communications. 2002. Vol. 123 (6-7). Pp. 263-266.
Cicero G., Catellani A. Towards SiC surface functionalization: An ab initio study // J. Chem Phys. 2005. Vol. 122. P. 214716.
Jiang M. et al. Ab initio molecular dynamics simulation of the effects of stacking faults on the radiation response of 3C-SiC // Sci Rep. 2016. Vol. 6. P. 20669.
Zhou H. et al. Ab initio electronic transport study of two-dimensional silicon carbide-based p-n junctions // Journal of Semiconductors. 2017. Vol. 38 (3). P. 033002.
Ardakani Y.S., Moradi M. Electronic and optical properties of Te-doped GaN monolayer before and after adsorption of dimethylmercury - DFT U/TDDFT DFT-D2 methods // Journal of Molecular Graphics and Modelling. 2021. Vol. 104. P. 107837.
Liu N., Wang W., Guo L. Superconductivity in nitrogen-doped 3C-SiC from first-principles calculations // Modern Physics Letters B. 2017. No. 31 (12). P. 1750116.
Poloni R. et al. Efficient first-principles method for structural studies of materials with substitutional disorder // Phys.: Condens. Matter. 2010. No. 22. P. 415401.
Yilun Gong, Grabowski B., Glensk A. et al. Temperature dependence of the Gibbs energy of vacancy formation of fcc Ni // Phys. Rev. B. No. 97. P. 214106.
Emery A., Wolverton C. High-throughput DFT calculations of formation energy, stability and oxygen vacancy formation energy of ABO3 perovskites // Sci Data. 2017. No. 4. P. 170153.
Grau-Crespo R. et al. Symmetry-adapted configurational modelling of fractional site occupancy in solids // Journal of Physics: Condensed Matter. 2007. No. 19 (25). P. 256201
Okhotnikov K., Charpentier T., Cadars S. Supercell program: A combinatorial structure-generation approach for the local-level modeling of atomic substitutions and partial occupancies in crystals // J. Cheminformatics. 2016. No. 8. P. 17.
Lee J., Seko A., Shitara K., Nakayama K., Tanaka I. Prediction model of band gap for inorganic compounds by combination of density functional theory calculations and machine learning techniques // Phys. Rev. B. No. 93. P. 115104.
Ferre o D. et al. Prediction of mechanical properties of rail pads under in-service conditions through machine learning algorithms // Advances in Engineering Software. 2021. Vol. 151. P. 102927.
Huang J.S., Liew J.X., Liew K.M. Data-driven machine learning approach for exploring and assessing mechanical properties of carbon nanotube-reinforced cement composites // Composite Structures. 2021. Vol. 267. P. 113917/
Jie Xiong et al. Machine learning of phases and mechanical properties in complex concentrated alloys // Journal of Materials Science Technology. 2021. Vol. 87. Pp. 133-142.
Prelas M. et al. Nuclear batteries and radioisotopes. Springer International Publishing, 2016. 335 p.
Pokoeva V.A., Sivakova K.P. Features diffusion doping SiC/Si structures for semiconductor microwave sensors phosphorus and boron under the influence of the internal electric field. Physics of wave processes and radio systems. 2007. Vol. 10. No. 2. Pp. 110-114. (In Rus.)
Teitelbaum A.Z., Khodunov A.V. One-dimensional modeling of the processes of ion doping and diffusion redistribution of impurities in silicon. Elektronnaya promyshlennost. 1984. Vol. 9 (137). Pp. 41-45. (In Rus.)
Galanin N.P., Malkovich R.Sh. Mathematical modeling of diffusion of two charged impurities in the semiconductor with the internal electric field. FTP. 1995. Vol. 20. No. 5. Pp. 1451-1456. (In Rus.)
Gurskaya A.V., Chepurnov V.I., Latukhina N.V., Dolgopolov M.V. Method for obtaining a porous layer of Silicon Carbide heterostructure on a Silicon Substrate. Patent of the Russian Federation No. 2653398. Publ. 24.01.2018. Byul. No. 3.
Dolgopolov M.V., Surnin O.L., Chepurnov V.I. Device for generating electric current by converting the energy of radiochemical beta decay of C-14. Patent of the Russian Federation No. 2714690. Publ. 19.02.2020. Byul. No. 5.
Surnin O.L., Chepurnov V.I. Silicon Carbide: The material for the radioisotope energy source. Patent for the invention 2733616 C2, 05.10.2020. Application No. 2020110496 dated 11.03.2020.
Gurskaya A.V., Dolgopolov M.V., Chepurnov V.I. C-14 beta converter. Phys. Part. Nuclei. 2017. No. 48. Pp. 941-944. (In Rus.) URL: https://doi.org/10.1134/S106377961706020X
Saurov A.N., Bulyarskiy S.V., Risovaniy V.D. et al. Nanostructured current sources excited by β-radiation based on carbon nanotubes. Proceedings of Universities. Electronics. 2015. Vol. 20. No. 5. Pp. 474-480. (In Rus.)
Imamov E.Z., Djalalov T.A., Muminov R.A., Rakhimov R.Kh. The difference between the contact structure with nanosize inclusions from the semiconductor photodiodes. Comp. nanotechnol. 2016. No. 3. Pp. 196-202.
Keywords:
Betavoltaics, Silicon Carbide heterostructeres, micro-alloying, radionuclide C-14, heteroendotaxy, defects formation, p-n-junction, energy efficiency.


Related Articles

Development of new energy units based on renewable kinds of energy Pages: 21-24 DOI: 10.33693/2313-223X-2020-7-4-21-24 Issue №17956
Application of solar dryers for drying agricultural products and optimization of drying time
solar air heater drying chamber temperatures convection saving
Show more
1. NATIONAL ECONOMY AND MANAGEMENT 08.00.05 Pages: 71-76 Issue №18758
Methods for selecting the optimal portfolio of projects with limited investment capital of the company to ensure the required energy efficiency
construction economics project portfolio energy efficiency project financing principles limited investment capital
Show more
Nanotechnology and Nanomaterials Pages: 91-102 DOI: 10.33693/2313-223X-2023-10-4-91-102 Issue №47939
Efficiency of Activated Nano-Heterojunctions on Silicon and Silicon Carbide Substrates
scaling activated nano-heterojunction semiconductor converter analytical modeling silicon carbide heterostructures
Show more
Power stations on the basis of renewable energy Pages: 85-90 Issue №15493
SOLAR ELEMENTS BASED ON NONCRYSTALLIC SILICON WITH NANOSTRUCTURED IMPACTS
solar cell spectrum silicon nanotechnology p-n-junction
Show more
Information Security Pages: 144-160 DOI: 10.33693/2313-223X-2023-10-3-144-160 Issue №23683
Identification and Extraction of Electrophysical Parameters for Solar Cell Models by Experimental Data
current-voltage characteristic parameter extraction solar cells silicon carbide porous silicon
Show more
Elements of Computing Systems Pages: 138-146 DOI: 10.33693/2313-223X-2023-10-1-138-146 Issue №22811
Scaling Models of Electrical Properties of Photo- and Beta-Converters with Nano-Heterojunctions
scaling nano-heterojunction current-voltage characteristic semiconductor converter mathematical modeling
Show more
Nanotechnology and Nanomaterials Pages: 193-213 DOI: 10.33693/2313-223X-2024-11-1-193-213 Issue №95355
Pulse Tunnel Effect: Fundamentals and Prospects for Application
pulsed tunneling effect coherent radiation functional materials superconductivity nanomaterials
Show more
10. INTERNATIONAL PUBLIC LAW, CORPORATE LAW, ENERGY LAW Pages: 236-239 Issue №3132
Some examples of using European experience for development of the Russian legal framework for energy and environment protection
The European Union Russia Federal law No. 261-FZ energy saving energy efficiency
Show more