Electrophysical Properties of a Solar Cell with Non-Traditional Contact Structures
( Pp. 110-121)

More about authors
Askarov Mardon A.
Каракалпакский государственный университет имени Бердаха Министерства высшего и среднего специального образования Республики Узбекистан
г. Нукус, Республика Каракалпакстан, Республика Узбекистан Imamov Erkin Z.
Ташкентский университет информационных технологий имени Мухаммеда аль-Хорезмий (ТУИТ) Министерства по развитию информационных технологий и коммуникаций Республики Узбекистан
г. Ташкент, Республика Узбекистан Muminov Ramizulla A.
Физико-технический институт Научно-производственного объединения «Физика-Солнце» Академии наук Республики Узбекистан
г. Ташкент, Республика Узбекистан
Abstract:
Based on a number of experimental and patented works, the competitive efficiency of a solar cell with non-traditional contact structures is substantiated in detail. It is shown that the efficiency of a solar cell depends on the innovative choice of its contact materials (nano-sized crystalline lead chalcogenide and structureless non-crystalline silicon). The specific electro physical properties of lead chalcogenide and silicon are considered, providing a significant improvement in the converting properties of the solar cell. A specific mechanism for the formation of a contact field due to the participation of current carriers from localized defect energy states of the silicon band gap is presented. By solving the Poisson equation, the parameters of the contact field of the  – nano-heterojunction were calculated.
How to Cite:
Askarov M.A., Imamov E.Z., Muminov R.A. Electrophysical Properties of a Solar Cell with Non-Traditional Contact Structures. Computational Nanotechnology. 2023. Vol. 10. No. 4. Pp. 110–121. DOI: 10.33693/2313-223X-2023-10-4-110-121. EDN: CPREPA
Reference list:
Imamov E.Z., Dzhalalov T.A., Muminov R.A. Electrophysical properties of the “nano-object–semiconductor” new contact structure. Technical Physics. 2015. Vol. 60. No. 5. Pp. 740–745.
Dzhalalov T.A., Porter L.M., Imamov E.Z., Muminov R.A. Theory of the electrostatic field in nanosized p-n-junctions. UzJPh – Uzbek Journal of Physics. 2015. Vol. 17. No. 3. Pp. 131–139. (In Rus.)
Imamov E.Z., Jalalov T.A., Muminov R.A., Rakhimov H.Kh. The theoretical model of new contact structure “nanoobject–semicondactor”. Computational Nanotechnology. 2015. No. 4. Pp. 58–63.
Dzhalalov T.A., Imamov E.Z., Muminov R.A. The electrical properties of a solar cell with multiple nanoscale p-n-transitions. Applied Solar Energy. 2014. Vol. 50. No. 4. Pp. 228–232.
Jalalov T., Imamov E. PRSCIiples of nanosolar energy. Current problems of combining and developing two technologies: Monograph. Saarbrucken: LAP LAMBERT Academic Publishing, 2016. P. 113. ISBN: 978-3-659-89808-2.
Imamov E.Z., Djalalov T.A., Muminov R.A., Rakhimov R.Kh. The difference between the contact structure with nanosize inclusions from the semiconductor photodiodes. Computational Nanotechnology. 2016. No. 3. Pp. 203–207.
Imamov E.Z., Djalalov T.A., Muminov R.A., Rakhimov R.Kh. Unique opportunity to create cheap but effective silicon solar cells. Computational Nanotechnology. 2017. No. 1. Pp. 61–65.
Dzhalalov T.A., Imamov E.Z., Muminov R.A.,Rakhimov R.Kh. Analysis of the role of nanoobjects in reducing the cost of silicon solar cells. Computational Nanotechnology. 2017. No. 3. Pp. 14–18., 30.08.2012.
Dzhalalov T.A., Imamov E.Z., Muminov R.A., Rakhimov R.Kh. Expanding the effective absorption spectrum of solar cells with nanoinclusions, Computational Nanotechnology. 2018. No. 1. Pp. 155–167. (In Rus.)
Jalalov T.A., Imаmov E.Z., Muminov R.A. et al. Solar elements based on noncrystallic silicon with nanostructured impacts. Computational Nanotechnology. 2018. No. 3. Pp. 85–90.
Imamov E.Z., Muminov R.A., Dzhalalov T.A., Karimov Kh.N. The influence of nanotechnological influence on the parameters of the solar cell. Ilmiy Xabarnoma / Scientific Bulletin. 2019. No. 1. Pp. 25–27.
Imamov E.Z., Muminov R.A., Dzhalalov T.A. et al. Nano-technological transformation of the illusory properties of the macrocosm. Uzbek Physical Journal. 2019. No. 3. Pp. 173–179.
Imamov E.Z., Muminov R.A., Dzhalalov T.A., Karimov Kh.N. Silicon solar cell with small p-n-junctions. Physics of Semiconductors and Microelectronics. 2019. No. 3 Pp. 78–87. (In Rus.)
Imamov E.Z., Muminov R.A., Djalalov T.A., Abdullaeva Sh.I. The state of solar energy in Uzbekistan in the framework of the development of renewable energy sources. Scientific Bulletin. Physical and Mathematical Research. 2021. Vol. 3. Issue 1. Pp. 46–51.
Imamov E.Z., Muminov R.A., Rakhimov R.Kh. Mathematical modeling of optimal parameters of atmospheric influence on the properties of the solar module. Computational Nanotechnology. 2020. Vol. 7. No. 2. Pp. 58–63.
Imamov E.Z., Muminov R.A., Rakhimov R.Kh. Analysis of the efficiency of a solar cell with nano-dimensional hetero transitions. Computational Nanotechnology. 2021. Vol. 8. No. 4. Pp. 42–45.
Imamov E.Z., Muminov R.A., Rakhimov R.Kh. and others. Modeling the electrical properties of a solar cell with many nanoheterojunctions. Computational Nanotechnology. 2022. Vol. 9. No. 4. Pp. 70–77. (In Rus.)
Askarov M.A., Imamov E.Z., Muminov R.A., Ismaylov K.A. Formation of a highly efficient silicon solar cell with nanoheterojunctions based on lead chalcogenides. Science and Education in Karakalpakstan. 2022. No. 4-2. Pp. 226–230.
Muminov R.A., Imamov E.Z., Rakhimov R.Kh., Askarov M.A. Factors of efficient generation of electricity in a solar cell with nanoheterojunctions. Computational Nanotechnology. 2023. Vol. 10. No. 1. Pp. 119–127.
Tsoi B. Electromagnetic radiation converter (options). Patent in the Eurasian Patent Office. EP2405487 A1, 30.08.2012.
Tsoi B. Method of manufacturing a beam junction, beam converter of electromagnetic radiation. Patent in the World Intellectual Property Organization. WO 2011/040838 A2. 07.04.2011.
Schaller R.D., Klimov V.I. Phys. Rev. 2004. No. 186601. P. 92.
Schaller R.D., Petruska M.A., Klimov V.I. Appl. Phys. 2005. No. 253102. P. 87.
Stancu V., Pentia E., Goldenblum A. et al. Romanian Journal of Information Science and Technology. 2007. Vol. 10. No. 1. Рp. 53–66.
Springholz G., Bauer G. Molecular beam epitaxy of IV–VI he­tero- and nanostructures. Phys. Stat. Sol. (b) 244. 2007. No. 8. Рp. 2752–2767.
Springholz G., Holy V., Pinczolits M., Bauer G. Self-organized growth of three-dimensional quantum-dot crystals with fcc-like stacking and a tunable lattice constant. Science. 1998. Vol. 282. Pp. 734–737.
Raab A., Springholz G. Controlling the size and density of self-assembled PbSe quantum dots by adjusting the substrate temperature and layer thickness. Appl. Phys. Lett. 2002. Vol. 81. No. 13. Pp. 2457–2459.
Gusev A.I. Nanomaterials, nanostructures, nanotechnologies. Moscow: Fizmatlit, 2005. 416 p.
Ledentsov N.N., Ustinov V.M., Shchukin V.A. et al. Heterostructures with quantum dots: Production, properties, lasers. FTP. 1998. Vol. 32. No. 4. Pp. 385–410. (In Rus.)
Prigozhin I.R., Stengers I. Time, chaos, quantum. Towards a solution to the paradox of time. Moscow, 2000.
Haken H. Synergetics. Berlin–Heidelberg: Springer, 1997.
Goldenblum A., Pintilie I., Buda M. et al. Journal of Applied Physics. 2006. No. 064105. P. 99.
Klimov V. J. Phys. Chem. 2006. 110. Pp. 16827–16845.
Zimin S.P., Gorlachev E.S. Nanostructured lead chalcogenides: monograph. Yaroslavl: YarSU, 2011. 232 p.
Burstein E., Wheeler R.G., Zemel J.N. Proceedings of the International Conference on the Physics of Semiconductors. Paris, 1964. P. 1065.
Nozik A.J. Physica E. 2002. No. 14. Pp. 115–120.
Schaller R.D., Sykora M., Pietryga J.M., Klimov V.I. Nano Lett. 2006. Vol. 6, No. 3. Pp. 424–429.
Bonch-Bruevich V.L. et al. Electronic theory of disordered semiconductors. Moscow: Nauka, 1981. 384 p.
Keywords:
structureless non-crystalline silicon, nanocrystalline lead chalcogenide, nano-heterojunction, localized defect energy states.


Related Articles

Elements of Computing Systems Pages: 138-146 DOI: 10.33693/2313-223X-2023-10-1-138-146 Issue №22811
Scaling Models of Electrical Properties of Photo- and Beta-Converters with Nano-Heterojunctions
scaling nano-heterojunction current-voltage characteristic semiconductor converter mathematical modeling
Show more