COMPUTATIONAL NANOTECHNOLOGY
( Pp. 6-10)
More about authors
Popov Alexander M.
doktor fiziko-matematicheskih nauk, professor; fakultet vychislitelnoy matematiki i kibernetiki
Lomonosov Moscow State University
Lomonosov Moscow State University
Abstract:
The article describes the range of problems arising in the nanosystems simulatio. It requires the development of efficient multi-scale spatial and temporal patterns. The use of mathematical models and computers is a part of the creating system’s process at the molecular level. Creating and using multiscale computational modellling is defined the success of the nanosystems simulation. It is named the computational nanotechnology.
How to Cite:
Popov A.M., (2014), COMPUTATIONAL NANOTECHNOLOGY. Computational Nanotechnology, 1 => 6-10.
Reference list:
Handbook of Theoretical and Computational Nanotechnology / Rieth M., Schommers W. et al. . American Scientific Publishers, 2006. In 10 vols.
Lyshevski S.E. (Ed.). Nano and molecular electronics: handbook. CRCpress, 2007. 912 p.
Popov A.M. Vychislitel nye nanotekhnologii : uchebnoe po- sobie. M.: KNORUS, 2014. 312 c.
Alferov ZH.I. Dvoynye geterostruktury: kontseptsiya prime- neniya v fizike, elektronike i tekhnologii. Nobelevskaya lek- tsiya po fizike, Stokgol m, 8 dekabrya, 2000g. // Uspekhi fiziche- skikh nauk. 2002. T. 172. Vyp. 9. S. 1068-1086.
G., Rohrer H., Gerber Ch., Weibel E. Tunneling through a control- lable vacuum gap // Applied Physics Letters. 1982. Vol. 40(2). P. 178-180.
Kohn W., Density Functional and Density Matrix Method Sacaling Linearly with the Number of Atoms // Physical Review Letters. 1996. Vol. 76. P. 3168-3171.
Marx D., Hutter J. Ab initio molecular dynamics: Theory and implementation // Modern Methods and Algorithms of Quantum Chemistry. 2000. Vol. 1. P. 329-477.
Andreoni W., Curioni A. New Advances in Chemistry and Mate- rials Science with CPMD and Parallel Computing // Parallel Compu- ting. 2000. Vol. 26. P. 819-842.
Gaussian Online Manual. URL: http://www.gaussian.com/g ur/ g03mantop.htm (data obrashcheniya: 05.10.2014)
VASP the GUIDE / Kresse G., Marsman M., Furthm ller J. // URL: http://cms.mpi.univie.ac.at/vasp/vasp/ (data obrashcheniya: 05.10.2014)
Steinke T. Tools for Parallel Quantum Chemistry Software // Modern Methods and Algorithms of Quantum Chemistry. 2000. Vol. 3. P. 67-96.
Eigler D. M., Lutz C. P., Rudge W. An atomic switch realized with the scanning tunneling microscope // Nature. 1991. Vol. 352. P. 600-603.
Joachim C., Gimzewski J. K., Aviram A. Electronics using hybridmolecular and mono-molecular devices // Nature. 2000. Vol. 408. P. 541-548.
Tao N. J. Electron transport in molecular junction // Nature Nanotechnology. 2006. Vol. 1. P. 173-181.
Liljeroth P., Repp J., Meyer G. Current-Induced Hydrogen Tautomerization and Conductance Switching of Naphthalocyanine Molecules // Science. 2007. Vol. 317 P. 1203-1206.
Liljeroth P., Molen S. Charge transport through molecular switches // Journal of Physics: Condensed Matter. 2010. Vol. 22. N 13. P. 133001-133030.
A multiscale modeling of naphthalocyanine-based molecular switch / Shumkin G.N., Popov A.M., Curioni A., Laino T. // Procedia Computer Science. 2010. Vol. 1. Issue 1. P. 185-192.
Frenkel D., Smit B. Understanding Molecular Simulation: From Algorithms to Applications. Academic Press, 2002. 638 p.
Vo-Dinh T. (Ed.). Biomedical Photonics Handbook. CRC Press, 2003. 1872 p.
Allenspach R., Julbert P.-O. Magnetic Domain Walls in Nanowires // MRS Bulletin. 2006. Vol. 31. Issue 05. P. 395-399.
Graphene-based atomic-scale switches / Standley B., Bao W., Zhang H. et al. // Nano Letters. 2008. Vol. 8. P. 3345-3349.
Meijer G. Who wins the nonvolatile memory race // Science. 2008. Vol. 319. N 5870. P. 1625-1626.
Resistance switching at the nanometre scale in amorphous carbon / Sebastian A., Pauza A., Rossel C. et al. // New Journal of Physycs. 2011. Vol. 13. P. 013020.
A multiscale modeling of naphthalocyanine-based molecular switch / Shumkin G.N., Popov A.M., Curioni A., Laino T. // Procedia Computer Science. 2010. Vol. 1. Issue 1. P. 185-192.
Multiscale quantum simulation of resistance switching in amorphous carbon / Shumkin G.N., Zipoli F., Popov A.M., Curioni A. // Procedia Computer Science. 2012. Vol. 9. P. 641-650.
Lyshevski S.E. (Ed.). Nano and molecular electronics: handbook. CRCpress, 2007. 912 p.
Popov A.M. Vychislitel nye nanotekhnologii : uchebnoe po- sobie. M.: KNORUS, 2014. 312 c.
Alferov ZH.I. Dvoynye geterostruktury: kontseptsiya prime- neniya v fizike, elektronike i tekhnologii. Nobelevskaya lek- tsiya po fizike, Stokgol m, 8 dekabrya, 2000g. // Uspekhi fiziche- skikh nauk. 2002. T. 172. Vyp. 9. S. 1068-1086.
G., Rohrer H., Gerber Ch., Weibel E. Tunneling through a control- lable vacuum gap // Applied Physics Letters. 1982. Vol. 40(2). P. 178-180.
Kohn W., Density Functional and Density Matrix Method Sacaling Linearly with the Number of Atoms // Physical Review Letters. 1996. Vol. 76. P. 3168-3171.
Marx D., Hutter J. Ab initio molecular dynamics: Theory and implementation // Modern Methods and Algorithms of Quantum Chemistry. 2000. Vol. 1. P. 329-477.
Andreoni W., Curioni A. New Advances in Chemistry and Mate- rials Science with CPMD and Parallel Computing // Parallel Compu- ting. 2000. Vol. 26. P. 819-842.
Gaussian Online Manual. URL: http://www.gaussian.com/g ur/ g03mantop.htm (data obrashcheniya: 05.10.2014)
VASP the GUIDE / Kresse G., Marsman M., Furthm ller J. // URL: http://cms.mpi.univie.ac.at/vasp/vasp/ (data obrashcheniya: 05.10.2014)
Steinke T. Tools for Parallel Quantum Chemistry Software // Modern Methods and Algorithms of Quantum Chemistry. 2000. Vol. 3. P. 67-96.
Eigler D. M., Lutz C. P., Rudge W. An atomic switch realized with the scanning tunneling microscope // Nature. 1991. Vol. 352. P. 600-603.
Joachim C., Gimzewski J. K., Aviram A. Electronics using hybridmolecular and mono-molecular devices // Nature. 2000. Vol. 408. P. 541-548.
Tao N. J. Electron transport in molecular junction // Nature Nanotechnology. 2006. Vol. 1. P. 173-181.
Liljeroth P., Repp J., Meyer G. Current-Induced Hydrogen Tautomerization and Conductance Switching of Naphthalocyanine Molecules // Science. 2007. Vol. 317 P. 1203-1206.
Liljeroth P., Molen S. Charge transport through molecular switches // Journal of Physics: Condensed Matter. 2010. Vol. 22. N 13. P. 133001-133030.
A multiscale modeling of naphthalocyanine-based molecular switch / Shumkin G.N., Popov A.M., Curioni A., Laino T. // Procedia Computer Science. 2010. Vol. 1. Issue 1. P. 185-192.
Frenkel D., Smit B. Understanding Molecular Simulation: From Algorithms to Applications. Academic Press, 2002. 638 p.
Vo-Dinh T. (Ed.). Biomedical Photonics Handbook. CRC Press, 2003. 1872 p.
Allenspach R., Julbert P.-O. Magnetic Domain Walls in Nanowires // MRS Bulletin. 2006. Vol. 31. Issue 05. P. 395-399.
Graphene-based atomic-scale switches / Standley B., Bao W., Zhang H. et al. // Nano Letters. 2008. Vol. 8. P. 3345-3349.
Meijer G. Who wins the nonvolatile memory race // Science. 2008. Vol. 319. N 5870. P. 1625-1626.
Resistance switching at the nanometre scale in amorphous carbon / Sebastian A., Pauza A., Rossel C. et al. // New Journal of Physycs. 2011. Vol. 13. P. 013020.
A multiscale modeling of naphthalocyanine-based molecular switch / Shumkin G.N., Popov A.M., Curioni A., Laino T. // Procedia Computer Science. 2010. Vol. 1. Issue 1. P. 185-192.
Multiscale quantum simulation of resistance switching in amorphous carbon / Shumkin G.N., Zipoli F., Popov A.M., Curioni A. // Procedia Computer Science. 2012. Vol. 9. P. 641-650.
Keywords:
computational nanotechnology, modelling of nanosystems, spatio-temporal models.
Related Articles
COMPUTER COMPLEXES AND INFORMATION TECHNOLOGIES Pages: 35-38 Issue №3497
SUPERCOMPUTER TRENDS
supercomputers
computational nanotechnology
parallel computing
Show more