COMPUTER MODELING THIN FILM GROWTH ON THE SURFACE BY LOW ENERGY CLUSTER DEPOSITION
( Pp. 160-163)

More about authors
Muminov Ramizulla A.
Физико-технический институт Научно-производственного объединения «Физика-Солнце» Академии наук Республики Узбекистан
г. Ташкент, Республика Узбекистан Rasulov Akbarali Mahamatovich doktor fiziko-matematicheskih nauk, professor
Tashkent University of Information Technologies Ferghana branch Ibragimov Nodir Ikromjonovich starshiy prepodavatel
Ferghana Polytechnic Institute
Abstract:
A report is presented about progress in the understanding of the properties of bi-metallic nanoparticles, their interaction with surfaces subsequent to low energy slowing down and the properties of nanostructured materials formed with these particles. A nanoparticle contains from a few atoms for the smallest ones to several thousand for the largest ones considered here. The properties of an atom result from quantization and the same is true for the molecules they form. The same is thus true for the smallest nanoparticles. At the other edge, many of the properties of macroscopic materials are well described by a classical approach and nanoparticles appear as objects at the fringing field between quantum and classical behaviors. In the study of their properties, using either a quantum or a classical approach, atomic scale methods appear as naturally well-suited. Atoms are considered as individual objects interacting via their outer shell electrons only. However even with such an approximation, solving the Schrödinger equation becomes quickly prohibitively heavy as the number of atoms involved increases. For the heaviest elements, relativistic effects make the problem even heavier.
How to Cite:
Muminov R.A., Rasulov A.M., Ibragimov N.I., (2019), COMPUTER MODELING THIN FILM GROWTH ON THE SURFACE BY LOW ENERGY CLUSTER DEPOSITION. Computational Nanotechnology, 2 => 160-163.
Reference list:
Henglein A. J. Phys. Chem. 1979. 83, 2858.
Henglein A., Mulvaney P., Linnert T., Holzwarth A. J. Phys. Chem 1992. 96, 2411
Henglein A., Mulvaney P., Holzwarth A., Sosebee T.E., Busenges B. Phys. Chem. 1992. 96, 754.
Henglein A., Giersig M. J. Phys. Chem. 1994. 98, 6931
Torigoe K., Nakajima Y., Esumi K. J. Phys. Chem. 1993. 97, 8304
Liz-Marzan L.M., Philips A.P. J. Phys. Chem. 1995. 99, 15120
Rousset J.L., Cadrot A.M., Aires F.S., Renouprez A., M linon P., Perez A., Pellarin M., Vialle J.L., Broyer M. Surf. Rev. Lett. 1996. 3, 1171
Rousset J.L., Renouprez A., Cadrot A.M. Phys. Rev. 1998. B58, 2150
Rousset J.L., Bertolini J.C., Miegge P. Phys. Rev. 1996. B53, 4947.
Zhurkin E.E., Hou M. J. Phys. Condens. Matter. 2000. 12, 6735
Van Hoof T., Hou M. Appl. Surf. Sci. 2004. 226, 94
Van Hoof T., Hou M. Eur. Phys. J. 2004. D29, 33.
Hou M., El Azzaoui M., Pattyn H., Verheyden J., Koops G., Zhang G. Phys. Rev. 2000. B62, 5117.
Hsieh H., Averback R.S., Sellers H., Flunn C.P. Phys. Rev. 1992. B45, 4417.
Hou M. Nucl. Instr. and Methods. 1998. B135, 501.
Pauwels B., Van Tendeloo G., Zhurkin E.E., Hou M., Verschoren G., Theil Kuhn L., Bouwen W., Lievens P. Phys. Rev. 2001. B63, 165406-1.
Kharlamov V.S., Zhurkin E.E., Hou M. Nucl. Instr. Methods. 2002. B193, 538.
Bardotti L., Pr vel B., M linon P., Perez A., Hou Q., Hou M. Phys. Rev. 2000. B62, 2835.
M ller K.-H. J. Apll. Phys. 1987. 61, 2516.
Hou Q., Hou M., Bardotti L., Pr vel B., M linon P., Perez A. Phys. Rev. 2000. B62, 2825.
Hou M., Kharlamov V.S., Zhurkin E.E. Phys. Rev. 2002. B66, 195408-1.
Dekoster J., Degroote B., Pattyn H., Langouche G., Vantomme A., Degroote S. Appl. Phys. Lett. 1999. 75, 938.
M linon P., Paillard V., Dupuis V., Perez A., Jensen P., Hoareau A., Perez J.P., Tuaillon J., Broyer M., Vialle J.L., Pellarin M., Baguenard B., Lerme J. Int. J. Mod. Phys. 1995. B139, 339.
Piseri P., Podest A., Barborini E., Milani P. Rev. Sci. Instr. 2001. 72, 2261.
Swope W.C., Andersen H.W., Berens P.H., Wilson K.R. J. Chem. Phys. 1982. 76, 1.
Oh D.J., Johnson R.A. J. Mater. Res. 1988. 3, 471. Johnson R.A. Phys. Rev. 1989. B39, 12554.
Dzhurakhalov A., Rasulov A., Van Hoof T., Hou M. Ag-Co clusters deposition on Ag (100): an atomic scale study // European Physical J. 2004. D31, R. 53-61.
Gropp W., Lusk E. User s Guide for mpich, a Portable Implementation of MPI Version 1.2.1
Hou Q., Hou M., Bardotti L., Pr vel B., M linon P., Perez A. Phys. Rev. 2000. B62, 2825.
Keywords:
computer simulation, low energy, cluster, deposition, slowing down, Molecular Dynamics, parallelization, Embedded Atom Model.


Related Articles

2. National economy and management Pages: 18-24 Issue №14694
MECHANISMS OF ENSURING SCIENTIFIC AND TECHNICAL AND SCIENTIFIC AND TECHNOLOGICAL COMPETITIVE ADVANTAGES OF RUSSIAN INDUSTRY ON THE EXAMPLE OF THE MILITARY-INDUSTRIAL COMPLEX
national project cluster industry military-industrial complex competitive advantages
Show more
DEBATING ISSUES OF HISTORY Pages: 25-32 Issue №22259
Interregional and Inter-Municipal Cooperation in Russia: Review
regional economic policy interregional (inter-municipal) competition interregional (inter-municipal) cooperation cluster competitive immunity
Show more
3. MODEL-ORIENTED DESIGN Pages: 37-50 Issue №5869
Two-stage mechanism of formation of ordered surface nanostructures under atomic deposition
deposition of atoms the formation of hexagonal ordered ensembles of nanoparticles, nanostructures and cell then computer simulation
Show more
3. FINANCE, CASH AND CREDIT 08.00.10 Pages: 101-104 DOI: 10.33693/2541-8025-2020-16-5-101-104 Issue №17564
Clustering of regional economy: tax aspect
tax cluster regions regional policy tax benefits
Show more
2. DECISION MAKING AND PROJECT FINANCE OF HIGH-TECH INDUSTRIES Pages: 85-87 Issue №8496
CREATION OF A CLUSTER OF THE ENTITIES AS METHOD OF INCREASE IN COMPETITIVENESS OF NATIONAL ECONOMY DURING POST-INDUSTRIALISM ERA
post-industrialism cluster information society virtual service
Show more