Two-stage mechanism of formation of ordered surface nanostructures under atomic deposition
( Pp. 37-50)

More about authors
Emelyanov Vladimir Ilich doktor fiziko-matematicheskih nauk, professor Fizicheskogo fakulteta
Lomonosov Moscow State University Tarkhov Andrey Evgenyevich student Fizicheskogo fakulteta
Lomonosov Moscow State University
Abstract:
Two-stage mechanism of formation of ordered surface nanostructures under atomic deposition is developed. At the first stage, the cooperative defect-deformational (DD) nucleation of seeding nanostructure occurs, described by the original deterministic DD Kuramoto-Sivashinsky (DDKS) equation for the concentration of mobile adatoms (surface defects). Periodic surface relief, formed at the nucleation stage, related to the surface defect deformation potential, serves as a self-organized mask for subsequent growth of nanostructures, described by the convential deterministic Kardar-Parisi-Zhang (KPZ) equation for the relief height. Computer simulations of nonlinear DDKS and KPZ equations describe the two-stage formation, in dependence on the sign of the surface defect deformation potential, of disordered and hexagonally ordered ensembles of nanoparticles or honeycomb void nanostructures. The spatial DD harmonics interaction during cooperative nucleation is shown to play the key role in determination of the resulting nanostructures characteristics.
How to Cite:
Emelyanov V.I., Tarkhov A.E., (2015), TWO-STAGE MECHANISM OF FORMATION OF ORDERED SURFACE NANOSTRUCTURES UNDER ATOMIC DEPOSITION. Computational Nanotechnology, 4 => 37-50.
Reference list:
V. A. Shchukin and D. Bimberg, Rev. Mod. Phys. 71, 1125 (1999).
Y. Kuramoto, Chemical Oscillations, Waves and Turbulence (Springer, Berlin, 1984).
G. I. Sivashinsky, Ann. Rev. Fluid Mech. 15, 179 (1983).
J. M.Garcia, L. Vazquez, R. Cuerno, J. A. Garcia, M. Castro, R. Gago, Towards Functional Nanomaterials, in Lecture Notes on Nanoscale Science and Technology, Ed. by Z. Wang (Springer, Heidelberg, 2009).
A.G. Limonov, Mathematical Models and Computer Simulations, 3, N2, 149 (2011).
J. Reif, O. Varlamova, S. Varlamov, M. Bestehorn, Appl. Phys. A, 104, 969 (2011).
V.I. Emel yanov, Laser Physics, 2009, Vol. 19, No. 3, pp. 538-543.
V.I. Emel yanov, in Laser ablation in liquids, Principles and applications in the preparation of nanomaterials, edited by G. Yang (Pan Stanford Publ., Singapore, 2012), Chap. 1, pp. 1-109.
V. I. Emel yanov, A. I. Mikaberidze, Phys. Rev. B72, 235407 (2005).
V.I. Emel yanov, A.S. Kuratov, Eur. Phys. J. B86, 270 (2013).
V.I. Emel yanov, A.S, Kuratov, Eur. Phys. J. B86, 381 (2013).
M. Kardar, G. Parisi, Y.C. Zhang, Phys. Rev. Lett. 56, 889 (1986).
A.B. Al shin, E.A. Al shina, A.G. Limonov, Comput. Math. Math. Phys. 49, 261 (2009).
S.M. Cox, P.C. Matthews, J. of Comput. Phys., 176, 430 (2002).
A. Kumar, B. Poelsema, H.J. Zandvliet, J. Phys. Chem. C 115, 6726 (2011).
A.O. Er, H.E. Elsayed-Ali, J. of Appl. Phys. 108, 034303 (2010).
S. Facsko, T. Bobek, A. Stahl, H. Kurz, T. Dekorsky, Phys. Rev. B69, 153412 (2004).
T.C. Kim, C.M. Ghim, H.J. Kim, D.H. Kim, D.Y. Noh, N.D. Kim, J.W. Chung, J.S. Yang, Y.J. Chang, T.W. Noh, B. Kahng and J.-S. Kim, Phys. Rev. Lett. 92, 246104 (2004).
V.I. Emel yanov, Laser Physics, 2011, Vol. 21, No. 1, pp. 222-228.
M.S. Hegazy, H.E. Elsayed-Ali, J. Appl. Phys. 104, 124302 (2008).-
Keywords:
deposition of atoms, the formation of hexagonal ordered ensembles of nanoparticles, nanostructures and cell then, computer simulation.


Related Articles

Power stations on the basis of renewable energy Pages: 160-163 DOI: 10.33693/2313-223X-2019-6-2-160-163 Issue №15585
COMPUTER MODELING THIN FILM GROWTH ON THE SURFACE BY LOW ENERGY CLUSTER DEPOSITION
computer simulation low energy cluster deposition slowing down
Show more