NUMERICAL SIMULATIONS OF MOLECULAR NANOSTRUCTURE OF SEMICONDUCTOR INSTABILITY IN BIFURCATION POINTS OF VOLT-AMPERE CHARACTERISTIC
( Pp. 41-47)

More about authors
Popov Alexander M. doktor fiziko-matematicheskih nauk, professor; fakultet vychislitelnoy matematiki i kibernetiki
Lomonosov Moscow State University
Abstract:
The work is directed to numerical simulation of instability of molecular nanostructure of semiconductor in the bifurcation points of volt-amper characteristic of S-form. Investigation is important for development of the memory devices based on phase change in semiconductors. Analysis of the model is provided, which could be choose for the basis of switching behavior of molecular structure of nano-point. Multiscale model is suggested for the study of work cycle of device. Model combines quantum molecular dynamics of Car-Parrinello model with the behavior of the system in bifurcation points of s-form of semiconductor with negative differential conductivity.
How to Cite:
Popov A.M., (2018), NUMERICAL SIMULATIONS OF MOLECULAR NANOSTRUCTURE OF SEMICONDUCTOR INSTABILITY IN BIFURCATION POINTS OF VOLT-AMPERE CHARACTERISTIC. Computational Nanotechnology, 4 => 41-47.
Reference list:
Kolomiets B.T. Svoystva i struktura troynykh poluprovodnikovykh sistem // ZHurnal tekhnicheskoy fiziki. 1955. Vyp. 25 № 6. S. 984-994.
Ovshinsky S.R. Reversible electrical switching phenomena in disordered structures // Phys. Rev. Lett. 1968. Vol. 21. No 20. Pp. 1450-1453.
Meijer G. Who wins the nonvolatile memory race // Science. 2008. 319. Rr. 1625-1626.
Rieth M., Schommers W. Handbook of Theooretical and Computation Nanotechnology, Germany, 2006.
Popov A.M. Vychislitel nye nanotekhnologii. M.: KnoRus, 2014. 312 c.
Sebastian A., Pauza A., Rossel Ch. et al. New Journal of Physics. 2011. 13.
Shumkin G.N., Zipoli F., Popov A.M., Curioni A. Multiscale quantum simulation of resistance switching in amorphous carbon // Procedia Computer Science. 2012. 9. Rr. 641-650.
Popov A.M., Shumkin G.N., Nikishin N.G. Multiscale simulation of thermal disruption in resistanse switching process in amorphous carbon // Journal of Phys.: Conf. Series. 2015. Vol. 640 (1). Rr. 012027.
Andreoni W., Curioni A. New Advances in Chemistry and materials Science with CPMD and Parallel Computing // Parallel Computing. 2000. 26. Rp. 819-842.
Volkov A.F., Kogan SH.M. Fizicheskie yavleniya v poluprovodnikakh s otritsatel noy differentsial noy provodimost yu // UFN. 1968. T. 96. Vyp. 4.
Kadomtsev B.B. Kollektivnye yavleniya v plazme. M.: Nauka, 1988. S. 304.
Tikhonov A.N., Samarskiy A.A. Uravneniya matematicheskoy fiziki. M.: Nauka, 1977.
Marks N.A., McKenzie D.R., Pailthorpe B.A., Bernasconi M., Parrinello M. Ab initio simulations of tetrahedral amorphous carbon // Phys. Rev. B. 1996. 54 (14). Rp. 9703-9714.
Takai K., Oga M., Sato H. et. al. Structure and electronic properties of nongraphitic disorded carbon system and its heat-treatment effects // Phys. Rev. B. 2003. 67. 47. R. 214202.
Wallace P.R. The Band Theory of Graphite // Phys. Rev. 1947. 71. R. 622.
Antonov I.N., Pivovarov A.V., Zotov V.D. Kolebaniya i volny v plazme poluprovodnikov s vintovoy neustoychivost yu // Prikladnaya fizika. 2007. № 3. R. 46.
Makarova T.L. Magnitnye svoystva uglerodnykh struktur // Fizika i tekhnika poluprovodnikov. 2004. T. 38. Vyp. 6. S. 641-665.