On the Problem of Applicability of Synthetic Data in Testing Intelligent Transport Systems
( Pp. 105-115)

More about authors
Gorodnichev Mikhail G. Cand. Sci. (Eng.), Associate Professor; Dean, Faculty of Information Technology
Moscow Technical University of Communications and Informatics (MTUCI)
Moscow, Russian Federation
Abstract:
Intelligent Transport Systems (ITS) are now being implemented to ensure optimal and safe road traffic. Increasingly, these systems use artificial intelligence to obtain characteristics about traffic flows. The number of sensors and transducers is increasing dramatically, resulting in higher loads on ITSs. Therefore, it is necessary to develop distributed monitoring systems with scalability and fault tolerance in mind. However, extensive testing is required before implementation. It is not possible to fully conduct such testing on real data due to various factors. Therefore, this paper proposes a tool for generating synthetic traffic flow data with subject matter specificity. The generation system is designed to be integrated into different systems, which will allow different ITS vendors to use it. This service fulfils the scalability requirements and is close to real data. The study proposes a scalable architecture of intelligent transport subsystem that fulfils the requirements of scalability and fault tolerance. As part of this work, a testbed is assembled and the proposed architecture is tested through the developed service of synthetic traffic flow state data generation.
How to Cite:
Gorodnichev M.G. On the Problem of Applicability of Synthetic Data in Testing Intelligent Transport Systems. Computational Nanotechnology. 2025. Vol. 12. No. 1. Pp. 105–115. (In Rus.). DOI: 10.33693/2313-223X-2025-12-1-105-115. EDN: MLHIWR
Reference list:
Hak Gu Kim, Sangmin Lee, Seongyeop Kim. Towards a better understanding of VR sickness: Physical symptom prediction for VR contents // arXiv. 2021.
Steinmetz J.D., Seeher K.M., Schiess N. et al. Global, regional, and national burden of disorders affecting the nervous system, 1990–2021: A systematic analysis for the Global Burden of Disease Study 2021 // The Lancet Neurology. 2024. Vol. 23. Issue 4. Pp. 344–381.
Sungtaek Cho, Dongyeon Kim, Sungon Lee. A comparative evaluation of a single and stereo lighthouse systems for 3-D estimation // IEEE Sensors Journal. 2021. P. 99.
Xianzheng Ma, Hossein Rahmani, Zhipeng Fan et al. REMOTE: Reinforced motion transformation network for semi-supervised 2D pose estimation in videos // The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22). 2022. Pp. 1944–1952.
Zhipeng Fan, Jun Liu, Yao Wang. Motion adaptive pose estimation from compressed videos // IEEE/CVF International Conference on Computer Vision (ICCV). 2021. Pp. 11719–11728.
Бычков А.Г., Киселёва Т.В., Маслова Е.В. Использование сверточных нейросетей для классификации изображений // Вестник Сибирского государственного индустриального университета. 2023. № 1 (43). С. 39–49.
Карякин А.В. Исследование задачи детектирования человека с помощью компьютерного зрения. URL: https://www.researchgate.net/publication/381037033_Issledovanie_zadaci_detektirovania_celoveka_s_pomosu_komputernogo_zrenia (дата обращения: 24.04.2025).
Кисленко С.Л., Менжега М.М. Использование современных технических средств в процессе фиксации результатов осмотра места происшествия // Вестник Института права Башкирского государственного университета. 2024. № 7 (3 (23)). С. 108–123.
Коновалов А.Н., Пилипенко Ю.В. и др. Использование дополненной реальности как метода нейронавигации при выполнении экстра-интракраниального микроанастомоза // Оперативная хирургия и клиническая анатомия. 2024. Т. 8. № 3. С. 28–34.
Кудинов Я.О. Исследование возможности классификации картин при помощи компьютерного зрения. URL: https://www.researchgate.net/publication/377219522_Klassifikacia_kartin_s_pomosu_komputernogo_zrenia (дата обращения: 30.01.2025).
Леонов И.Ю. Human pose estimation на изображениях асан в йоге. URL: https://www.researchgate.net/publication/381116740_Human_pose_estimation_na_izobrazeniah_asan_v_joge (дата обращения: 30.01.2025).
Keywords:
human pose estimation, neurological rehabilitation, deep learning, machine vision, automated motion diagnostics.


Related Articles

Informatics and Information Processing Pages: 64-80 DOI: 10.33693/2313-223X-2024-11-3-64-80 Issue №143798
Algorithm for identifying abnormal actions
deep learning human behavior video surveillance
Show more
Mathematical and Software of Computеrs, Complexes and Computer Networks Pages: 87-93 DOI: 10.33693/2313-223X-2024-11-4-87-93 Issue №173588
Algorithm for Detection of Head Tremor According to Data of a Smartphone Video Camera of a Biomedical Monitoring System
head tremor smartphone diagnostics non-invasive monitoring spectral analysis facial contour recognition
Show more
Information Security Pages: 97-104 DOI: 10.33693/2313-223X-2025-12-1-97-104 Issue №188734
Development of a Software Package for the Implementation of the Algorithm Berlecamp – Messy on Simple Shift Registers with Linear Feedback for Students of the Discipline “Cryptography”
human pose estimation neurological rehabilitation deep learning machine vision automated motion diagnostics
Show more
Mathematical and Software of Computеrs, Complexes and Computer Networks Pages: 114-121 DOI: 10.33693/2313-223X-2024-11-4-114-121 Issue №173588
Improving Network Security Improving Network Security Through Deep Learning RNN Approach
RNN LSTM intrusion detection system RNN LSTM
Show more
Informatics and Information Processing Pages: 116-128 DOI: 10.33693/2313-223X-2025-12-1-116-128 Issue №188734
Development of Game Module Using Technology of Human Pose Estimation for the Neurological Rehabilitation System
human pose estimation neurological rehabilitation deep learning machine vision automated motion diagnostics
Show more
Informatics and Information Processing Pages: 152-160 DOI: 10.33693/2313-223X-2024-11-5-152-160 Issue №172073
Oil Pollution Detection in Aquatic Ecosystems Using UAVS and Multispectral Imaging Based on Deep Learning Technologies
environmental monitoring UAVs multispectral images oil spills deep learning
Show more