Machine Learning Methods for Determining Optimal Irrigation Timing for Corn
( Pp. 20-36)

More about authors
Gataullin Sergey T. Cand. Sci. (Econ.); leading researcher, Institute of Advanced Technologies and Industrial Programming; MIREA – Russian Techno­logical University
MIREA – Russian Technological University
Moscow, Russian Federation Osipov Alexey V. Cand. Sci. (Phys.-Math.); associate professor, Institute of Advanced Technologies and Industrial Programming; MIREA – Russian Technological University; Moscow, Russian Federation Pleshakova Ekaterina S. Cand. Sci. (Eng.); associate professor, Institute of Advanced Technologies and Industrial Programming; MIREA – Russian Technological University; Moscow, Russian Federation Yudin Alexander V. Dr. Sci. (Econ.), Cand. Sci. (Phys.-Math.); Head, Department of Enterprise Programming, Institute of Advanced Technologies and Industrial Programming; MIREA – Russian Technological University; Moscow, Russian Federation
Abstract:
The global forecast for increasing food production on irrigated lands poses the task of optimizing irrigation. Saving water resources is especially important in arid areas, where it is very important to clearly understand what to water, when and in what quantity. The article proposes a method for optimizing the irrigation process of agricultural crops using a control system based on visible and hyperspectral images. We proposed an algorithm and developed a system for obtaining a map of corn irrigation in the low-delay mode. The system can be installed on a circular sprinkler and consists of 8 IP cameras connected to a video recorder connected to a laptop and a hyperspectral camera synchronized with one of the IP cameras. The algorithm for establishing irrigation rates consists of three stages. The stage of establishing the average stage of plant growth (a site of 6–8 plants), the stage of determining the amount of water in plants on this site and the stage of establishing plant irrigation rates directly. In the first case, we used a modified DenseNet121 convolutional neural network with a compression and excitation (SE) block, trained on visible images from an IP camera and allowing to identify the growth stage according to the Biologische Bundesanstalt, Bundessortenamt und CHemische Industrie (BBCH) scale with an accuracy of up to 92%. In the second case, we used hyperspectral images, which, together with the data on the development stage, determine the amount of water in plants. Hyperspectral images were converted into a 2D-model using wavelet transforms and then classified using the 2D-CapsNet capsule neural network. The accuracy of detecting a lack or excess of water in plants was 94%. At the third stage, the data obtained from the two previous stages and a number of characteristics related to the current state of the atmosphere and the field were combined into a separate classifier based on a neural network – a multilayer perceptron, which marked the areas of the field with increased and decreased irrigation rates. The resulting map was then used to irrigate the field. This reduced the amount of water used by 7.4%. At the same time, the efficiency of irrigation water use, linked to the yield of agricultural crops per unit of water used, increased due to an increase in yield by 8.4%.
How to Cite:
Gataullin S.T., Osipov A.V., Pleshakova E.S., Yudin A.V. Machine Learning Methods for Determining Optimal Irrigation Timing for Corn. Computational Nanotechnology. 2024. Vol. 11. No. 5. Pp. 20–36. (In Rus.). DOI: 10.33693/2313-223X-2024-11-5-20-36. EDN: BPUCZY
Reference list:
Hou L., Li H., Lu M. et al. Application of photogrammetry of unmanned aerial vehicles for quality control in construction projects // Journal of Civil Engineering and Management. 2021. No. 25 (8). Pp. 779–791.
Hu Z., Zhang W., Duan Z. Quality control in construction based on BIM and big data technology // Achievements in the field of civil engineering. 2020.
Tan P., Xie H., Yao Y. Quality control of concrete structures based on computer vision technology // Achievements in the field of civil engineering. 2020.
Андрейчиков А.В., Андрейчикова О.Н. Системный анализ и синтез стратегических решений в инноватике. Математические, эвристические и интеллектуальные методы системного анализа и синтеза инноваций: учебное пособие. М., 2015. 306 c.
Макаров И.М., Лохин В.М., Манько С.В., Романов М.П. Искусственный интеллект и интеллектуальные системы управления. М.: Наука, 2020. 336 c.
Алексеев Ю.В., Сомов Г.Ю. Градостроительное планирование поселений. Эволюция планирования. М.: Изд-во Ассоциации строительных вузов, 2021. Т. 1. 336 c.
Тарануха Н.Л., Первушин Г.Н., Смышляева Е.Ю., Папунидзе П.Н. Технология и организация строительных процессов. М.: Изд-во Ассоциации строительных вузов, 2022. 192 c.
Ивакин Я.А. Интеллектуализация ГИС. Методы на основе онтологий. LAP Lambert Academic Publishing, 2010. 322 с.
Попович В.В., Потапычев С.Н., Панькин А.В. и др. Интеллектуальная ГИС в системах мониторинга // Труды СПИИ РАН. 2006. Т. 1. № 3. С. 172–184.
Савиных В.П., Цветков В.Я. Развитие методов искусственного интеллекта в геоинформатике // Транспорт Российской Федерации. 2010. № 5. С. 41–43.
Kendal S.L., Green M. An introduction to knowledge engineering. L.: Springer, 2007. 287 p.
Popovich V. Intelligent GIS Conceptualization // Information fusion and geographic information systems, lecture notes in geoinformation and cartography. 2014. Pp. 17−44.
Voženilek V. Artificial intelligence and GIS: Mutual meeting and passing. International Conference on Intelligent Networking and Collaborative Systems. 2009. Pp. 279–284.
Chursin A., Makarov Yu. Management of competitiveness. Theory and practice. Springer International Publishing Switzerland, 2015. 378 p.
Chursin A., Vlasov Y., Makarov Yu. Innovation as a basis for competitiveness: Theory and practice. Springer International Publishing, 2016, 336 р.
Keswani B., Mohapatra A.G., Mohanty A. et al. Adapting weather conditions based IoT enabled smart irrigation technique in precision agriculture mechanisms. Neural Comput. Appl. 2019. Vol. 31. No. 1. Pp. 277 292.
Wang E., Attard S., Linton A. et al. Development of a closed-loop irrigation system for sugarcane farms using the Internet of Things. Comput. Electron. Agricult. 2020. Vol. 172.
Kamienski C., Soininen J.-P., Taumberger M. et al. Smart water management platform: IoT-based precision irrigation for agriculture. Sensors. 2019. Vol. 19. No. 2. P. 276.
Muangprathub J., Boonnam N., Kajornkasirat S. et al. IoT and agriculture data analysis for smart farm. Comput. Electron. Agricult. 2019. Vol. 156. Pp. 467 474.
Bonfante A., Monaco E., Manna P. et al. LCIS DSS an irrigation supporting system for water use efficiency improvement in precision agriculture: A maize case study. Agricult. Syst. 2019. Vol. 176.
Campos N.G.S., Rocha A.R., Gondim R. et al. Smart green: An Internet-of-Things framework for smart irrigation. Sensors. 2020. Vol. 20. No. 1. P. 190.
Gl ria A., Dionisio C., Sim es G. et al. Water management for sustainable irrigation systems using Internet-of-Things. Sensors. 2020. Vol. 20. No. 5. P. 1402.
Kujawa S., Niedba a G. Artificial neural networks in agriculture. Agriculture. 2021. Vol. 11. No. 6. P. 497.
Jha K., Doshi A., Patel P., Shah M. A comprehensive review on automation in agriculture using artificial intelligence. Artif. Intell. Agricult. 2019. Vol. 2. Pp. 1 12.
Linaza M.T., Posada J., Bund J. et al. Data-driven artificial intelligence applications for sustainable precision agriculture. Agronomy. 2021. Vol. 11. No. 6. P. 1227.
Saiz-Rubio V., Rovira-M s F. From smart farming towards agriculture 5.0: A review on crop data management. Agronomy. 2020. Vol. 10. No. 2. P. 207.
Benos L., Tagarakis A.C., Dolias G. et al. Machine learning in agriculture: A comprehensive updated review. Sensors. 2021. Vol. 21. No. 11. P. 3758.
Cravero A., Sep lveda S. Use and adaptations of machine learning in big data applications in real cases in agriculture. Electronics. 2021. Vol. 10. No. 5. P. 552.
van Klompenburg T., Kassahun A., Catal C. Crop yield prediction using machine learning: A systematic literature review. Comput. Electron. Agricult. 2020. Vol. 177.
Gonzalez-de-Santos P., Fern ndez R., Sep lveda D. et al. Field robots for intelligent farms Inhering features from industry. Agronomy. 2020. Vol. 10. No. 11. P. 1638.
Goap A., Sharma D., Shukla A.K., Krishna C.R. An IoT based smart irrigation management system using Machine learning and open source technologies. Comput. Electron. Agricult. 2018. Vol. 155. Pp. 41 49.
Nawandar N.K., Satpute V.R. IoT based low cost and intelligent module for smart irrigation system. Comput. Electron. Agricult. 2019. Vol. 162. Pp. 979 990.
Mendes W.R., Ara jo F.M.U., Dutta R., Heeren D.M. Fuzzy control system for variable rate irrigation using remote sensing. Expert Syst. Appl. 2019. Vol. 124. Pp. 13 24.
Sun A.Y., Scanlon B.R. How can big data and machine learning benefit environment and water management: A survey of methods applications and future directions. Environ. Res. Lett. 2019. Vol. 14. No. 7.
Chang C.-L., Lin K.-M. Smart agricultural machine with a computer vision-based weeding and variable-rate irrigation scheme. Robotics. 2018. Vol. 7. No. 3. P. 38.
Kamyshova G., Solovyev D., Terekhova N., Kolganov D. Development of approaches to the intellectualization of irrigation control systems. Agriculture Digitalization and Organic Production. 2022. Vol. 245. Pp. 359 369.
Torres-Sanchez R., Navarro-Hellin H., Guillamon-Frutos A. et al. A decision support system for irrigation management: Analysis and implementation of different learning techniques. Water. 2020. Vol. 12. No. 2. P. 548.
Suntaranont B., Aramkul S., Kaewmoracharoen M., Cham prasert P. Water irrigation decision support system for practical weir adjustment using artificial intelligence and machine learning techniques. Sustainability. 2020. Vol. 12. No. 5. P. 1763.
Kashyap P.K., Kumar S., Jaiswal A. et al. Towards precision agriculture: IoT-enabled intelligent irrigation systems using deep learning neural network. IEEE Sensors J. 2021. Vol. 21. No. 16. Pp. 17479 17491.
Diao W., Liu G., Zhang H. et al. Influences of soil bulk density and texture on estimation of surface soil moisture using spectral feature parameters and an artificial neural network algorithm. Agriculture. 2021. Vol. 11. No. 8. P. 710.
Wang J., Peng J., Li H. et al. Soil salinity mapping using machine learning algorithms with the Sentinel-2 MSI in arid areas China. Remote Sens. 2021. Vol. 13. No. 2. P. 305.
Diez F.J., Navas-Gracia L.M., Chico-Santamarta L. et al. Prediction of horizontal daily global solar irradiation using artificial neural networks (ANNs) in the castile and Le n region Spain. Agronomy. 2020. Vol. 10. No. 1. P. 96.
D Emilio A., Aiello R., Consoli S. et al. Artificial neural networks for predicting the water retention curve of sicilian agricultural soils. Water. 2018. Vol. 10. No. 10. P. 1431.
C ceres G., Mill n P., Pereira M., Lozano D. Smart farm irrigation: Model predictive control for economic optimal irrigation in agriculture. Agronomy. 2021. Vol. 11. No. 9. P. 1810.
Kamyshova G.N., Soloviov D.A., Kolganov D.A. et al. Neuromodeling in irrigation management for sustainable agriculture. Adv. Dyn. Syst. Appl. 2021. Vol. 16. No. 1. Pp. 159 170.
Gl ria A., Cardoso J., Sebasti o P. Sustainable irrigation system for farming supported by machine learning and real-time sensor data. Sensors. 2021. Vol. 21. No. 9. P. 3079.
Yang W., Nigon T., Hao Z. et al. Estimation of corn yield based on hyperspectral imagery and convolutional neural network. Comput. Electron. Agricult. 2021. Vol. 184.
Pang Y., Shi Y., Gao S. et al. Improved crop row detection with deep neural network for early-season maize stand count in UAV imagery. Comput. Electron. Agricult. 2020. Vol. 178.
Zhong L., Hu L., Zhou H. Deep learning based multi-temporal crop classification. Remote Sens. Environ. 2019. Vol. 221. Pp. 430 443.
Kuznetsova A., Maleva T., Soloviev V. Detecting apples in orchards using YOLOv3. Proc. ICCSA. 2020. Vol. 12249. Pp. 923 934.
Kuznetsova A., Maleva T., Soloviev V. YOLOv5 versus YOLOv3 for apple detection. Cyber-Physical Systems: Modelling and Intelligent Control, Cham. 2021. Vol. 338. Pp. 349 358.
Kamyshova G. et al. Artificial neural networks and com puter vision s-based phytoindication systems for variable rate irriga tion improving. IEEE Access. 2022. Vol. 10. Pp. 8577 8589.
Shu Meiyan, Dong Qizhou, Fei ShuaiPeng. et al. Improved estimation of canopy water status in maize using UAV-based digital and hyperspectral images. Computers and Electronics in Agriculture. 2022. Vol. 197.
Huang G. et al. Densely connected convolutional networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2017. S. 4700 4708.
Tsapin D., Pitelinskiy K., Suvorov S. et al. Machine learning methods for the industrial robotic systems security. J. Comput Virol Hack Tech. 2023.
Chunhua Liao, Jinfei Wang, Bo Shan. et al. Near real-time detection and forecasting of within-field phenology of winter wheat and corn using Sentinel-2 time-series data. ISPRS Journal of Photogrammetry and Remote Sensing. 2023. Vol. 196. Pp. 105 119.
Keywords:
artificial intelligence, neural networks, computer vision, hyperspectral imaging, corn classification, irrigation prescription map, machine learning.


Related Articles

Artificial Intelligence and Machine Learning Pages: 11-21 DOI: 10.33693/2313-223X-2024-11-2-11-21 Issue №119881
Development of a Cryptocurrency Trading Strategy Using Machine Learning Methods
cryptocurrency Bitcoin trading strategies machine learning moving averages
Show more
8. CIVIL LAW, BUSINESS LAW, FAMILY LAW; PRIVATE INTERNATIONAL LAW 12.00.03 Pages: 132-138 Issue №19821
The Legal Regime of Protection of Big Data as Part of Artificial Intelligence Systems
big data artificial intelligence database object of related rights personal data
Show more
REGIONAL AND SECTORAL ECONOMICS Pages: 185-191 Issue №24067
Risks of Artificial Intelligence Development in Selected Branches of Russian Economy
risks artificial intelligence investment climate development programmes and projects.
Show more
Social and Political Philosophy Pages: 202-206 DOI: 10.33693/2223-0092-2024-14-4-202-206 Issue №131736
Artificial Intelligence vs Human Mind
philosophical knowledge artificial intelligence social and philosophical understanding ethical problems philosophy
Show more
Sociology of Management Pages: 203-209 DOI: 10.33693/2223-0092-2024-14-6-203-209 Issue №169134
How Films about Artificial Intelligence Influence the Attitude of Metropolitan Residents Towards Smart City Technologies
artificial intelligence cinema trust cinema culture
Show more
MATHEMATICAL, STATISTICAL AND INSTRUMENTAL METHODS OF ECONOMICS Pages: 167-178 Issue №24067
Café’s Performance Modeling with Spatial Data
Python. spatial data economic indicators machine learning Python.
Show more
3. PRIVATE LAW (CIVIL) DISCIPLINES Pages: 142-150 Issue №19964
Modern Military Technologies and the Responsibility of a Scientist, Creator, Operator, etc.: Some Approaches of the BRICS Countries
BRICS countries Russia China new military technologies unmanned vehicles
Show more
PRIVATE LAW (CIVIL) Pages: 131-137 DOI: 10.33693/2541-8025-2023-19-1-131-137 Issue №24449
Legal Regulation of PropTech in the USA
PropTech property technologies real estate deals artificial intelligence distributed ledger technologies
Show more
Уголовно-правовые науки (юридические науки) Pages: 158-165 Issue №108273
Artificial Intelligence in Forensic Automotive Expertise
artificial intelligence forensic automotive expertise investigation of the technical condition of the vehicle solving routine tasks of forensic examination.
Show more
Sociology of Management Pages: 177-185 DOI: 10.33693/2223-0092-2024-14-4-177-185 Issue №131736
Practice of Managing Social Role in a Smart City Using Marketplaces as an Example
social role sociology of management marketplace Ozone urban agglomeration
Show more