Pedestrian Detection and Tracking of Their Movement Trajectory Using the Background Segmentation Method Based on KNN
( Pp. 88-94)

More about authors
Jiacheng Lou master student, 2nd year student, Faculty of Control Systems and Robotics
Saint Petersburg National Research University of Information Technologies
Mechanics and Optics (ITMO University), St. Petersburg, Russian Federation Xuecheng Wen master student, 2nd year student, Faculty of Control Systems and Robotics Jiazhe Li master student, 2nd year student, Faculty of Software Engineering and Computer Systems
Abstract:
Problem statement. Target detection and video image tracking is one of the important topics of computer vision, as well as a problem that needs to be urgently addressed in practical applications. Interference makes it difficult to get the target position. Faced with this problem, scientists have proposed many tracking algorithms. Purpose. In real video monitoring, the system can automatically detect the foreground and draw the trajectory of the foreground. Methods. Use the KNN background segmenting algorithm in combination with OpenCV to detect the foreground and track the trajectory of the video. Novelty. It can continuously detect the foreground in the video and is also applicable to the new foreground in the video. This method is easy to call, does not require the use of a large amount of computer performance resources and can achieve real-time detection and tracking. Result. In a real test, we got good test results, we successfully identified moving pedestrians on video and drew their trajectories. Practical relevance. The algorithm can be applied to road traffic, can determine the trajectory of a vehicle to track vehicles, and can also be used to detect pedestrians to pave the way for subsequent recognition of pedestrian behavior.
How to Cite:
Lou Jiacheng, Wen Xuecheng, Li Jiazhe. Pedestrian Detection and Tracking of Their Movement Trajectory Using the Background Segmentation Method Based on KNN. Computational Nanotechnology. 2023. Vol. 10. No. 1. Pp. 88–94. (In Rus.) DOI: 10.33693/2313-223X-2023-10-1-88-94
Reference list:
Акушский И.Я., Юдицкий Д.И. Машинная арифметика в остаточных классах. М.: Сов. радио, 1968. 440 с.
Burbaev T.M. et al. Use of magnetic field screening by high-temperature superconducting films to switch microwave signals. Technical Physics Letters. 1998. Vol. 24. No. 7. Pp. 533–535.
Vendik I.B. et al. Nonlinear characteristics of resonators and filters made from high-temperature superconducting films. Technical Physics Letters. 1998. Vol. 24. No. 12. Pp. 956–958.
Волков А.Ф., Заварицкий Н.В., Надь Ф.Я. Электронные устройства на основе слабосвязанных сверхпроводников. М.: Сов. радио, 1978. 136 с.
Гудков А. Джозефсоновские переходы: электрофизические свойства, области применения и перспективы развития // Электроника НТБ. 2014. № 9. С. 65–80.
Гусев А.Н. Идентификация свойства сверхпроводимости и прогнозирование новых составов пятикомпонентных оксиарсенидов с повышенной температурой перехода в сверхпроводящее состояние // Вестник МГОУ. Сер.: Физика-Математика. 2011. № 1. С. 36–46.
Дьяконов В. Сенсация 2015: Teledyne LeCroy освоила выпуск первого в мире 100-ГГц осциллографа реального времени! // Компоненты и технологии. 2015. № 3. С. 16–22.
Емельянов В. Микроэлектронные СВЧ-компоненты на основе высокотемпературных сверхпроводников. Ч. 1 // Компоненты и технологии. 2001. № 6. URL: https://www.elibrary.ru/download/elibrary_15166442_32507913.pdf (дата обращения: 17.01.2023).
Ирхин В.П., Федяев В.Н. Реализация операций модулярной арифметики на когерентных фазовращателях // Нейрокомпьютеры: разработка, применение. 2010. № 9. С. 55–59.
Kagan M. Y. et al. Anomalous superconductivity and superfluidity in repulsive fermion systems. Physics-Uspekhi. 2015. Vol. 58. No. 8. Pp. 733–761.
Kapaev V.V. et al. High-frequency response and the possibilities of frequency-tunable narrow-band terahertz amplification in resonant tunneling nanostructures. Journal of Experimental and Theoretical Physics. 2013. Vol. 116. No. 3. Pp. 497–515.
Кестер У. Аналого-цифровое преобразование. М.: Техносфера, 2007. 1016 с.
Кожевников А.А. Арифметические вентили модулярных спецпроцессоров // Приборы и системы. Управление, контроль, диагностика. 2018. № 2. С. 46–51.
Кожевников А.А. Синтез тональных устройств для умножения по модулю // Вестник Брянского государственного технического университета. 2019. № 3. С. 65–70.
Кожевников А.А. Мультифункциональные арифметические устройства в остаточных классах // Доклады ТУСУР. 2018. № 4. С. 59–62.
Keywords:
KNN, computer vision, target tracking, trajectory prediction, KNN.


Related Articles

Artificial intelligence and machine learning Pages: 9-18 DOI: 10.33693/2313-223X-2022-9-3-9-18 Issue №21873
Artificial Intelligence Elements for the Task of Determining the Position of the Vehicle in the Image
YOLO computer vision neural networks convolutional neural networks image recognition
Show more
Mathematical Modeling, Numerical Methods and Complex Programs Pages: 36-47 DOI: 10.33693/2313-223X-2024-11-1-36-47 Issue №95355
Development of a Visual Odometry Model Based on Sensors and Video Stream Analysis
inertial measuring devices computer vision visual odometry video stream analysis
Show more