Modification of a Quantum-inspired Genetic Algorithm for Numerical Optimization Using Qudit under Conditions of Simulating Quantum Decoherence
( Pp. 58-85)

More about authors
Maslennikov Vladimir V. senior lecturer, Department of Corporate Information Systems, Institute of Information Technology
MIREA – Russian Technological University
Moscow, Russian Federation Demidova Liliya A. Dr. Sci. (Eng.), Professor; professor, Department of Corporate Information Systems, Institute of Information Technology; MIREA – Russian Technological University; Moscow, Russian Federation
Abstract:
The genetic algorithm for numerical optimization (GA) of the metaheuristic class is a method for finding optimal solutions based on the biological principles of natural selection and variability. GA is characterized by high operating speed, resistance to noise in the data, low probability of hitting the local extremum of the multimodal objective function, as well as the simultaneous application of probabilistic and deterministic rules for generating search space points. An alternative to the classical GA is the quantum-inspired genetic algorithm for numerical optimization (QIGA), which has advantages that are unattainable for GA by using the concepts and principles of quantum computing. The article proposes a new approach to the implementation of a quantum-inspired genetic numerical optimization algorithm for searching for the global maximum of the objective function, based on modeling the functioning of the GA by simulating the execution of quantum calculations based on qudit in the conditions of the existence of quantum decoherence in the era of noisy medium-scale quantum algorithms. For this purpose, to carry out quantum operations of rotating the states of multilevel quantum systems, the paper presents a density matrix based on Heisenberg–Weyl operators as an analogue of the Bloch sphere for qudits. The simulation of quantum decoherence is interpreted from the point of view of the influence of extraneous noise emanating from the environment on the qudit and is presented as the use of a normal random variable with zero mathematical expectation and unit variance in quantum gates. At the same time, the work presents detailed pseudocodes of the functioning of both the most modified quantum-inspired genetic algorithm for numerical optimization and its individual operations. Testing is carried out by conducting computational experiments with the implementation of a modified algorithm on two-dimensional and multidimensional functions of test optimization problems, as well as when solving an applied optimization problem of planning hybrid flow production in the manufacturing industry based on financial costs and solving the problem of increasing forecasting accuracy based on compact extreme learning machines. The experimental results demonstrate the superiority of the new algorithm over QIGA and classical optimization algorithms in the accuracy of the solution, the speed of convergence with the target value of the global maximum and the execution time of the algorithm.
How to Cite:
Maslennikov V.V., Demidova L.A. Modification of a Quantum-inspired Genetic Algorithm for Numerical Optimization Using Qudit under Conditions of Simulating Quantum Decoherence. Computational Nanotechnology. 2024. Vol. 11. No. 2. Pp. 58–85. (In Rus.). DOI: 10.33693/2313-223X-2024-11-2-58-85. EDN: MRWGYA
Reference list:
Arute F., Arya K., Babbush R. et al. Quantum supremacy using a programmable superconducting processor. Nature. 2019. No. 574. Pp. 505–510. DOI: 10.1038/s41586-019-1666-5
Arrazola J., Delgado A., Bardhan B., Lloyd S. Quantum-inspired algorithms in practice. Quantum. 2020. No. 4. P. 307. DOI: 10.22331/q-2020-08-13-307
Abs da Cruz A.V., Vellasco M.M.B.R., Pacheco M.A.C. Quantum-inspired evolutionary algorithm for numerical optimization. IEEE International Conference on Evolutionary Computation. 2006. Pp. 2630–2637. DOI: 10.1109/CEC.2006.1688637
Asadian A., Erker P., Huber M., Klöckl C. Heisenberg–Weyl observables: Bloch vectors in phase space. Physical Review A. 2016. No. 94. DOI: 10.1103/PhysRevA.94.010301
Aksenov M., Zalivako I., Semerikov I. et al. Realizing quantum gates with optically addressable Yb + 171 ion qudits. Physical Review A. 2023. No. 107. DOI: 10.1103/PhysRevA.107.052612
Ab Rashid M.F.F., Mutasim M.A.N. Modeling and optimization of cost-based hybrid flow shop scheduling problem using metaheuristics. International Journal of Global Optimization and Its Application. 2023. No. 2. Pp. 244–254. DOI: 10.56225/ijgoia.v2i4.265
Beiranvand V., Hare W., Lucet Y. Best practices for comparing optimization algorithms. Optimization and Engineering. 2017. No. 18. DOI: 10.1007/s11081-017-9366-1
Chen J., Zhang F., Chen M. et al. Classical simulation of intermediate-size quantum circuits. 2018. DOI: 10.48550/arXiv.1805.01450.
Chabaud U., Ferrini G., Grosshans F., Markham D. Classical simulation of Gaussian quantum circuits with non-Gaussian input states. Physical Review Research. 2021. No. 3. DOI: 10.1103/PhysRevResearch.3.033018
Carlier J., Néron E. An exact method for solving the multi-processor flow-shop. RAIRO – Operations Research. 2000. No. 34. Pp. 1–25. DOI: 10.1051/ro:2000103
Demidova L., Gorchakov A. A study of chaotic maps producing symmetric distributions in the fish school search optimization algorithm with exponential step decay. Symmetry. 2020. No. 12. P. 784. DOI: 10.3390/sym12050784
Demidova L., Nikulchev E., Sokolova Y. The SVM classifier based on the modified particle swarm optimization. International Journal of Advanced Computer Science and Applications. 2016. No. 7. Pp. 16–24. DOI: 10.14569/IJACSA.2016.070203
Fay M., Proschan M. Wilcoxon–Mann–Whitney or t-test? On assumptions for hypothesis test and multiple interpretations of decision rules. Statistics Surveys. 2010. No. 4. Pp. 1–39. DOI: 10.1214/09-SS051
Huang Q., Mendl C. Classical simulation of quantum circuits using a multiqubit Bloch vector representation of density matrices. Physical Review A. 2022. No. 105. DOI: 10.1103/PhysRevA.105.022409
Hao T., Huang X., Jia C., Peng C. A quantum-inspired tensor network algorithm for constrained combinatorial optimization problems. Frontiers in Physics. 2022. No. 10. P. 906590. DOI: 10.3389/fphy.2022.906590
Han K., Kim J. Genetic quantum algorithm and its application to combinatorial optimization problem. Proceedings of the IEEE Conference on Evolutionary Computation, ICEC. 2000. Vol. 2. Pp. 1354–1360. DOI: 10.1109/CEC.2000.870809
Hakemi S., Houshmand M., KheirKhah E., Hosseini S. A review of recent advances in quantum-inspired metaheuristics. Evolutionary Intelligence. 2022. No. 1-16. DOI: 10.1007/s12065-022-00783-2
Harrison D., Rubinfeld D. Hedonic housing prices and the demand for clean air. Journal of Environmental Economics and Management. 1978. No. 5. Pp. 81–102. DOI: 10.1016/0095-0696(78)90006-2
Kaul D., Raju H., Tripathy B.K. Quantum-computing-inspired algorithms in machine learning. 2018. DOI: 10.4018/978-1-5225-5219-2.ch001
Krysenko D., Prudnikov O. Laser cooling of 171Yb+ ion in polychromatic light field. Journal of Experimental and Theoretical Physics. 2023. No. 137. Pp. 239–245. DOI: 10.1134/S1063776123080149
Kibler D., Aha D.W., Albert M.K. Instance-based prediction of real-valued attributes. Computational Intelligence. 1989. No. 5 (2). Pp. 51–57. DOI: 10.1111/j.1467-8640.1989.tb00315.x
Moretti V. Mathematical foundations of quantum mechanics: An advanced short course. International Journal of Geometric Methods in Modern Physics. 2015. No. 13. DOI: 10.1142/S0219887816300117
Nowotniak R., Kucharski J. Building Blocks propagation in quantum-inspired genetic algorithm. Scientific Bulletin of Academy of Science and Technology, Automatics. 2010. No. 14.
Preskill J. Quantum computing in the NISQ era and beyond. Quantum. 2018. No. 2. DOI: 10.22331/q-2018-08-06-79
Sabbar B.M., Rasool H.A. Quantum inspired genetic algorithm model based automatic modulation clas­sification // Webology. 2021. Vol. 18. Special Issue. Pp. 1070–1085. DOI: 10.14704/WEB/V18SI04/WEB18182. EDN: BNCEZA.
Schlosshauer M. Decoherence, the measurement problem, and interpretations of quantum mechanics. Reviews of Modern Physics. 2003. No. 76. Pp. 1267–1305.
Schlosshauer M. Quantum decoherence. Physics Reports. 2019. Vol. 831. Pp. 1–57. DOI: 10.1016/j.physrep.2019.10.001. EDN PTXNOQ
Sharma G., Ghosh S. Four-dimensional Bloch sphere representation of qutrits using Heisenberg–Weyl operators. 2021. URL: https://arxiv.org/abs/2101.06408
Sofge D. Prospective algorithms for quantum evolutionary computation: Proceedings of the Second Quantum Interaction Symposium (QI-2008). College Publications, UK, 2008. URL: https://arxiv.org/pdf/0804.1133
Song S.J., Wang Y., Lin X., Huang Q. Study on GA-based training algorithm for extreme learning machine: 7th International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC). Hangzhou, China, 2015. Pp. 132–135. DOI: 10.1109/IHMSC.2015.156.
Thieu N.V., Mirjalili S. MEALPY: An open-source library for latest meta-heuristic algorithms in Python. Journal of Systems Architecture. 2023. No. 139. DOI: 10.1016/j.sysarc.2023.102871
Wang Y., Hu Z., Sanders B., Kais S. Qudits and High-Dimensional Quantum Computing. Frontiers in Physics. 2020. No. 8. DOI: 10.3389/fphy.2020.589504
Zhang G. Quantum-inspired evolutionary algorithms: A survey and empirical study. J. Heuristics. 2011. No. 17. Pp. 303–351. DOI: 10.1007/s10732-010-9136-0
Żurek W. Decoherence, einselection, and the quantum origins of the classical. Reviews of Modern Physics. 2001. No. 75. DOI: 10.1103/RevModPhys.75.715
Demidova L.A., Gorchakov A.V. Application of bioinspired global optimization algorithms to improve the accuracy of forecasts of compact extreme learning machines. Russian Technological Journal. 2022. Vol. 10. No. 2. Pp. 59–74. (In Rus.). DOI: 10.32362/2500-316X-2022-10-2-59-74. EDN: WCFZVD.
Korzh O.V., Chernyavsky A.Yu., Korzh A.A. Modeling of the quantum Fourier transform with noise on a Lomonosov supercomputer. In: Scientific service on the Internet: All facets of parallelism: Proceedings of the International Supercomputer Conference, Novorossiysk, September 23–28, 2013. Novorossiysk: Publishing House of the Moscow State University, 2013. Pp. 188–193. (In Rus.). EDN: SXFHSD.
Maslennikov V.V. Quantum-inspired optimization algorithms in solving operational management problems. In: New information technologies in scientific research: Materials of the XXVIII All-Russian Scientific and Technical Conference of Students, Young Scientists and Specialists, Ryazan, November 22–24, 2023. Ryazan: Ryazan State Radio Engineering University named after V.F. Utkin, 2023. Pp. 42–44. (In Rus.). EDN: TTUMEJ.
Keywords:
quantum-inspired algorithm, genetic algorithm, numerical optimization, qudit, Bloch sphere, density matrix, quantum superposition of states, quantum decoherence.


Related Articles

Automation of Manufacturing and Technological Processes Pages: 16-25 DOI: 10.33693/2313-223X-2023-10-2-16-25 Issue №23034
Genetic Programming and Object Modeling of Manipulation Robots
manipulation robots inverse kinematics problem object modeling genetic algorithm genetic programming
Show more
Quantum and Molecular Computing and Quantum Simulations Pages: 13-18 DOI: 10.33693/2313-223X-2021-8-3-13-18 Issue №19706
On the Physical Representation of Quantum Systems
tri-state+ bound states qubit qutrit qudit
Show more
Quantum and Molecular Computing and Quantum Simulations Pages: 29-35 DOI: 10.33693/2313-223X-2021-8-3-29-35 Issue №19706
Tri-State+ Communication Symmetry Using the Algebraic Approach
tri-state + QuIC interconnects communication bit
Show more
Informatics and Information Processing Pages: 93-101 DOI: 10.33693/2313-223X-2024-11-2-93-101 Issue №119881
Using Genetic Algorithm in Clustering Problem for Weighted Oriented Graph
genetic algorithm clustering optimization users Internet
Show more