ITERATIVE APPROACH TO SOLVE THE INVERSE DIFFRACTION PROBLEM UNDER SHARP FOCUSING CONDITIONS
( Pp. 28-31)

More about authors
Fidirko Nikita Sergeevich aspirant.
Russia Samara National Research University Volotovskiy Sergey Gennadyevich veduschiy programmist. Institut sistem obrabotki izobrazheniya RAN - filial Federalnogo gosudarstvennogo uchrezhdeniya «Federalnyy nauchno-issledovatelskiy centr «Kristallografiya i fotonika» Rossiyskoy akademii nauk»; inzhener NOC-403, Samarskiy nacionalnyy issledovatelskiy universitet imeni akademika S.P. Koroleva, Samara, Rossiya
IPSI RAS - Branch of the FSRC «Crystallography and Photonics» RAS; Russia Samara National Research University
For read the full article, please, register or log in
Abstract:
In this paper, we consider an iterative approach to solve the inverse diffraction problem under sharp focusing conditions. It is shown that using this approach we can obtain a complex distribution in the entrance of the focusing system that creates desired intensity distribution in the focal area. As a result of the iteration process we obtained a complex distribution of transverse components of the initial field that is focused in a light spot smaller than the diffraction limit.
How to Cite:
Fidirko N.S., Volotovskiy S.G., (2016), ITERATIVE APPROACH TO SOLVE THE INVERSE DIFFRACTION PROBLEM UNDER SHARP FOCUSING CONDITIONS. Computational Nanotechnology, 4 => 28-31.
Reference list:
K. Duan, B. Lu, A comparison of the vectorial nonparaxial approach with Fresnel and Fraunhofer approximations // Optik. - 2004. - Vol. 115, No. 5. - P. 218-222.
X. Wang, Z. Fan and T. Tang, Numerical calculation of a converging vector electromagnetic wave diffracted by an aperture by using Borgnis potentials. I. General theory // J. Opt. Soc. Am. A. - 2006. - Vol. 23, No. 4. - P. 872-877.
Balalaev S.A., KHonina S.N., Realizatsiya bystrogo algoritma preobrazovaniya Kirkhgofa na primere besselevykh puchkov // Komp yuternaya optika. - 2006. - T. 30. - S. 69-73.
F. Shen and A. Wang, Fast-Fourier-transform based numerical integration method for the Rayleigh-Sommerfeld diffraction formula // Applied Optics. - 2006. - Vol. 45, No. 6. - P. 1102-1110.
K. Matsushima, T. Shimobaba, Band-Limited Angular Spectrum Method for Numerical Simulation of Free-Space Propagation in Far and Near Fields // Optics Express. - 2009. - Vol. 17, No. 22. - P. 19662-19673.
KHonina S.N., Ustinov A.V., Kovalev A.A., Volotovskiy S.G., Rasprostranenie radial no-ogranichennykh vikhrevykh puchkov v blizhney zone: I. Algoritmy raschyeta // Komp yuternaya optika. - 2010. - T. 34, № 3. - S. 317-332.
KHonina S.N., Volotovskiy S.G., Minimizatsiya svetovogo i tenevogo fokal nogo pyatna s kontroliruemym rostom bokovykh lepestkov v fokusiruyushchikh sistemakh s vysokoy chislovoy aperturoy // Komp yuternaya optika. - 2011. - T. 35, № 4. - S. 438-451.
R.W. Gerchberg, W.D. Saxton, A practical algorithm for the determination of phase from image and diffraction plane pictures // Optik. - 1972. - Vol. 35. - P. 237-246
Fienup J.R., Phase retrieval algorithm: a comparison // Applied Optics. - 1982. - Vol. 21, No. 15. - P. 2758-2769.
Khonina S.N., Kotlyar V.V., Soifer V.A., Fast Hankel transform for focusator synthesis // Optik. - 1991. - Vol. 88, No. 4. - P. 182-184
M. Bernhardt, F. Wyrowski, and O. Bryngdahl, Iterative techniques to integrate different optical functions in a diffractive phase element // Appl. Opt. - 1991. - Vol. 30. - P. 4629-4635
G.-Z. Yang, B.-Y. Gu, X. Tan, M.-P. Chang, B.-Z. Dong, and O. K. Ersoy, Iterative optimization approach for the design of diffractive phase elements simultaneously implementing several optical functions // J. Opt. Soc. Am. A. - 1994. - Vol. 11, No. 6. - P. 1632-1640
Pavel ev V.S. i KHonina S.N., Bystryy iteratsionnyy raschet fazovykh formirovateley mod Gaussa-Lagerra // Komp yuternaya optika. - 1997. - T. 17. - S. 15-20
Metody komp yuternoy optiki / A.V. Volkov, D.L. Golovashkin, L.D. Doskolovich, N.L. Kazanskiy, V.V. Kotlyar, V.S. Pavel ev, R.V. Skidanov, V.A. Soyfer, V.S. Solov ev, G.V. Usplen ev, S.I. KHaritonov, S.N. KHonina // pod red. V.A. Soyfera, Uchebnoe posobie, M.: Fizmatlit. - 2000. - 688 s.
Mukhametgaleev I.V., KHonina S.N., Iteratsionnyy algoritm rascheta izobrazheniy, obladayushchikh bezdifraktsionnymi svoystvami, na osnove vydeleniya uzkogo spektral nogo kol tsa // Vestnik Samarskogo gosudarstvennogo aerokosmicheskogo universiteta im. akademika S.P. Korolyeva. - 2010. - №4(24). - C. 238-246
W C. Chew, C. C. Lu, and Y. M. Wang, Efficient computation of three-dimensional scattering of vector electromagnetic waves // J. Opt. Soc. Am. A. - 1994. - Vol. 11, No. 4. - P. 1528-1537
D. Macias, A. Vial, and D. Barchiesi, Application of evolution strategies for the solution of an inverse problem in near-field optics // J. Opt. Soc. Am. A. - 2004. - Vol. 21, No. 8. - P. 1465-1471
V.V. Kotlyar and R.V. Skidanov, A.G. Nalimov, Method for rapidly calculating the diffraction of laser radiation at microscopic objects // J. Opt. Technol. - 2005. - Vol. 72, No. 5. - P. 400-405
D.P. Levadoux, Stable integral equations for the iterative solution of electromagnetic scattering problems // C. R. Physique. - 2006. - Vol. 7. - P. 518-532
T.G. Jabbour and S. M. Kuebler, Vectorial beam shaping // Opt. Express. - 2008. - Vol. 16. - P. 7203-7213
Khonina S.N., Volotovskiy S.G., Minimizing the bright/shadow focal spot size with controlled side-lobe increase in high-numerical-aperture focusing systems // Advances in Optical Technologies (Hindawi Publishing Corporation). - 2013. - ID 267684, 13pages, http://dx.doi.org/10.1155/2013/267684
Bogdanova E.YU., KHonina S.N., Neparaksial nyy iteratsionnyy raschyet difraktsionnykh opticheskikh elementov, fokusiruyushchikh v subvolnovoe svetovoe pyatno // Vestnik Samarskogo gosudarstvennogo aerokosmicheskogo universiteta im. akademika S.P. Korolyeva. - 2014. - №3(45). - C. 122-129
J. Turunen and F. Wyrowski, Diffractive Optics for Industrial and Commercial Applications // Wiley, Jena. - 1998.
D.M. de Juana, J.E. Oti, V.F. Canales, and M.P. Cagigal, Design of superresolving continous phase filters // Opt. Lett. - 2003. - Vol. 28. - P. 607-609
S.F. Pereira and A.S. van de Nes, Superresolution by means of polarization, phase and amplitude pupil masks // Opt. Commun. - 2004. - Vol. 234. - P. 119-124
Khonina S.N., Kazanskiy N.L., Volotovsky S.G., Vortex phase transmission function as a factor to reduce the focal spot of high-aperture focusing system, Journal of Modern Optics. - 2011. - Vol. 58, No. 9. - P. 748-760
Khonina S.N., Simple phase optical elements for narrowing of a focal spot in high-numerical-aperture conditions // Optical Engineering. - 2013. - Vol. 52, No. 9. - P. 091711-7pp
C.M. Blanca and S.W. Hell, Axial superresolution with ultrahigh aperture lenses // Opt. Express. - 2002. - Vol. 10. - P. 893-898
T. G. Jabbour and S. M. Kuebler, Axial field shaping under high-numerical aperture focusing // Opt. Lett. - 2007. - Vol. 32. - P. 527-529
Khonina S.N. and Golub I., Engineering the smallest 3D symmetrical bright and dark focal spots // J. Opt. Soc. Am. A. - 2013. - Vol. 30, No. 10. - P. 2029-2033
Khonina S.N., Ustinov A.V., Volotovsky S.G., Shaping of spherical light intensity based on the interference of tightly focused beams with different polarizations // Optics Laser Technology. - 2014. - V. 60. - P. 99-106
H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard and C. T. Chong, Creation of a needle of longitudinally polarized light in vacuum using binary optics // Nature Photonics. - 2008. - Vol. 2. P. 501-505.
Karpeev S.V., KHonina S.N., Opticheskaya skhema dlya universal noy generatsii i konversii polyarizatsionno-neodnorodnogo lazernogo izlucheniya s ispol zovaniem DOE // Komp yuternaya optika. - 2009. - T. 33, № 3. - S. 261-267
KHonina S.N., Volotovskiy S.G., Upravlenie vkladom komponent vektornogo elektricheskogo polya v fokuse vysokoapreturnoy linzy s pomoshch yu binarnykh fazovykh struktur // Komp yuternaya optika. - 2010. - T. 34, № 1. - S. 58-68
KHonina S.N., Savel ev D.A. Vysokoaperturnye binarnye aksikony dlya formirovaniya prodol noy komponenty elektricheskogo polya na opticheskoy osi pri lineynoy i krugovoy polyarizatsii osveshchayushchego puchka // ZHurnal Eksperimental noy i Teoreticheskoy Fiziki. - 2013. - T. 144, vyp. 4(10). - S. 718-726
Khonina, S.N. and Degtyarev, S.A., A Longitudinally polarized beam generated by a binary axicon // Journal of Russian Laser Research. - 2015. - Vol. 36, No. 2. - P. 151-161
W. Chen, Q. Zhan, Three-dimensional focus shaping with cylindrical vector beams // Optics Communications. - 2006. -Vol. 265. -P. 411-417.
Fidirko N.S., KHonina S.N., Formirovanie trekhmernykh raspredeleniy intensivnosti pri difraktsii lazernogo izlucheniya na kol tsevykh aperturakh v usloviyakh ostroy fokusirovki // Izvestiya Samarskogo nauchnogo tsentra RAN. - 2014. - T.16, № 6. - S. 19-25
KHonina S.N., Ustinov A.V., Analiz interferentsii radial no-polyarizovannykh lazernykh puchkov, sformirovannykh kol tsevymi opticheskimi elementami s vikhrevoy fazoy v usloviyakh ostroy fokusirovki // Komp yuternaya optika. - 2015. - T. 39, № 1. - S. 12-25
B. Richards and E. Wolf, Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system // Proc. Roy. Soc. A 253, 358-379 (1959).
Y. Kozawa and S. Sato, Sharper focal spot formed by higher-order radially polarized laser beams // J. Opt. Soc. Am. A. - 2007. - V. 24. - P. 1793-1798
Khonina S.N., Alferov S.V., Karpeev S.V., Strengthening the longitudinal component of the sharply focused electric field by means of higher-order laser beams // Optics Letters. - 2013. - Vol. 38, No. 17. - P. 3223-3226.
Savelyev D.A., Khonina S.N., Golub I., Tight focusing of higher orders Laguerre-Gaussian modes // AIP Conference Proceedings. - 2016. - Vol. 1724. - P. 020021-8p.
Keywords:
sharp focus, iterative algorithm, the diffraction limit.


Related Articles

Issue №8242
ITERATIVE APPROACH TO SOLVE THE INVERSE DIFFRACTION PROBLEM UNDER SHARP FOCUSING CONDITIONS
sharp focus iterative algorithm the diffraction limit
Show more
Issue №3497
СУБВОЛНОВАЯ ФОКУСИРОВКА ЛАЗЕРНОГО ИЗЛУЧЕНИЯ С ИСПОЛЬЗОВАНИЕМ УСТРОЙСТВ МИКРООПТИКИ
eurooptic the diffraction limit Soboleva focus a planar binary photonic crystal lens conditioning disc
Show more