DISLOCATIONS INFLUENCE ON DURABILITY OF NANOSYSTEMS: AN ATOMIC SCALE SIMULATION
( Pp. 6-10)

More about authors
Zavodinsky Victor G. doktor fizikomatematicheskih nauk, professor; veduschiy nauchnyy sotrudnik
Institute of Applied Mathematics of the Russian Academy of Sciences
Khabarovsk, Russian Federation
For read the full article, please, register or log in
Abstract:
Using a quantum-mechanical computer approach (the theory of the density functional and the method of pseudopotentials) formation of dislocations in nanosystems of various nature (Si as a material with covalent bonds and Mg as a typical metal) and their influence on reaction of nanosystems on surface stretching is investigated. It is shown that mechanisms of formation of dislocations in nanosystems with metal and covalent bonds significantly differ each from other. Dislocations poorly influence nanosystems durability at small deformations, but they promote their destruction at big deformations
How to Cite:
Zavodinsky V.G., (2015), DISLOCATIONS INFLUENCE ON DURABILITY OF NANOSYSTEMS: AN ATOMIC SCALE SIMULATION. Computational Nanotechnology, 3: 6-10.
Reference list:
K.G. Lopat ko, .G. Aftandilyants, YA.V. Zaulichniy, M.V. Karpets . Struktura ta vlastivosti nanochastinok, otrimanikh elektroiskrovoyu obrobkoyu midi ta sribla. Metaloznavstvo ta obrobka metaliv. 2009. № 3. s. 57-62.
M.YU. Gutkin, A.L. Kolesnikova, S.A. Krasnitskiy, A.E. Romanov. Petli dislokatsiy nesootvetstviya v kompozitnykh nanochastitsakh tipa yadro-obolochka. Fizika tverdogo tela, 2014, tom 56, vyp. 4, s. 695-702.
Chien-Chun Chen, Chun Zhu, E.R. White, Chin-Yi Chiu, M. C. Scott, B. C. Regan, L. D. Marks, Yu Huang, Jianwei Miao. Three dimensional imaging of dislocations in nanoparticles at atomic resolution, Nature, 2013, 496, p. 74-77.
R. W. Nunes, J. Bennetto, and D. Vanderbilt. Atomic structure of dislocation kinks in silicon. Phys. Rev. B, 1998, 57, p. 10388-10397.
C. Woodward, D. R. Trinkle, L. G. Hector, Jr., D. L. Olmsted. Prediction of dislocation cores in aluminum from density functional theory. Phys.Rev.Lett. 2008, 100, p. 045507(4).
J.A Yasi, T. Nogaret, D. R. Trinkle, Y. Qi, L. G. Hector Jr, W.A. Curtin. Basal and prism dislocation cores in magnesium: comparison of first-principles and embedded-atom-potential methods predictions. Modelling and Simulation in Materials Science and Engineering, 2009, 17, p. 055012(13).
M. Beckstedte, A. Kley, J. Neugebauer, M. Scheffler. Density functional theory calculations for poly-atomic systems: electronic structure, static and elastic properties and ab initio molecular dynamics. Comp. Phys. Commun. 1997, 107, p. 187-205.
V.G. Zavodinsky. Small tungsten carbide nanoparticles: Simulation of structure, energetic, and tensile strength. Int. J. Refract. Metals and Hard Mater. 2010. 28. p. 446-450.
V.G. Zavodinskiy. Mekhanicheskie kharakteristiki nanorazmernykh prosloek kobal ta v tverdykh splavakh WC/Co. Mekhanika Kompoz. Mater. Konstr. 2011, № 2. C. 177-183.
H. Hohenberg, W. Kohn. Inhomogeneous electron gas. Phys. Rev. 1964, 136, B864-71.
W. Kohn, J.L. Sham. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. 1965, 140, A1133-38.
M.L. Cohen, V. Heine. Pseudopotential theory of cohesion and structure. In Solid State Physics, V. 24, P. 250. Academic Press, New York, 1970.
M. Fuchs, M. Scheffler Ab initio pseudopotentials for electronic structure calculations of poly atomic systems using density-functional theory. Comp. Phys. Commun. 1999. 119. p. 67-165.
N. Troullier, J.L. Martins. Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B. 1991. V. 43. P. 1993-2006.
J.P. Perdew, A. Zunger. Self-interaction correction to density functional approximation for many-electron systems. Phys. Rev. B. 1981. 23. p. 5048-5079.
Keywords:
modeling, nanosystems, deployment, silicon, magnesium.