DISLOCATIONS INFLUENCE ON DURABILITY OF NANOSYSTEMS: AN ATOMIC SCALE SIMULATION
( Pp. 6-10)
More about authors
Zavodinsky Victor G.
Dr. Sci. (Phys.-Math.), Professor; leader-researcher
Khabarovsk branch at Institute of Applied Mathematics of the Far Eastern branch of the Russian Academy of Sciences
Khabarovsk, Russian Federation
Khabarovsk branch at Institute of Applied Mathematics of the Far Eastern branch of the Russian Academy of Sciences
Khabarovsk, Russian Federation
Abstract:
Using a quantum-mechanical computer approach (the theory of the density functional and the method of pseudopotentials) formation of dislocations in nanosystems of various nature (Si as a material with covalent bonds and Mg as a typical metal) and their influence on reaction of nanosystems on surface stretching is investigated. It is shown that mechanisms of formation of dislocations in nanosystems with metal and covalent bonds significantly differ each from other. Dislocations poorly influence nanosystems durability at small deformations, but they promote their destruction at big deformations
How to Cite:
Zavodinsky V.G., (2015), DISLOCATIONS INFLUENCE ON DURABILITY OF NANOSYSTEMS: AN ATOMIC SCALE SIMULATION. Computational Nanotechnology, 3 => 6-10.
Reference list:
K.G. Lopat ko, .G. Aftandilyants, YA.V. Zaulichniy, M.V. Karpets . Struktura ta vlastivosti nanochastinok, otrimanikh elektroiskrovoyu obrobkoyu midi ta sribla. Metaloznavstvo ta obrobka metaliv. 2009. № 3. s. 57-62.
M.YU. Gutkin, A.L. Kolesnikova, S.A. Krasnitskiy, A.E. Romanov. Petli dislokatsiy nesootvetstviya v kompozitnykh nanochastitsakh tipa yadro-obolochka. Fizika tverdogo tela, 2014, tom 56, vyp. 4, s. 695-702.
Chien-Chun Chen, Chun Zhu, E.R. White, Chin-Yi Chiu, M. C. Scott, B. C. Regan, L. D. Marks, Yu Huang, Jianwei Miao. Three dimensional imaging of dislocations in nanoparticles at atomic resolution, Nature, 2013, 496, p. 74-77.
R. W. Nunes, J. Bennetto, and D. Vanderbilt. Atomic structure of dislocation kinks in silicon. Phys. Rev. B, 1998, 57, p. 10388-10397.
C. Woodward, D. R. Trinkle, L. G. Hector, Jr., D. L. Olmsted. Prediction of dislocation cores in aluminum from density functional theory. Phys.Rev.Lett. 2008, 100, p. 045507(4).
J.A Yasi, T. Nogaret, D. R. Trinkle, Y. Qi, L. G. Hector Jr, W.A. Curtin. Basal and prism dislocation cores in magnesium: comparison of first-principles and embedded-atom-potential methods predictions. Modelling and Simulation in Materials Science and Engineering, 2009, 17, p. 055012(13).
M. Beckstedte, A. Kley, J. Neugebauer, M. Scheffler. Density functional theory calculations for poly-atomic systems: electronic structure, static and elastic properties and ab initio molecular dynamics. Comp. Phys. Commun. 1997, 107, p. 187-205.
V.G. Zavodinsky. Small tungsten carbide nanoparticles: Simulation of structure, energetic, and tensile strength. Int. J. Refract. Metals and Hard Mater. 2010. 28. p. 446-450.
V.G. Zavodinskiy. Mekhanicheskie kharakteristiki nanorazmernykh prosloek kobal ta v tverdykh splavakh WC/Co. Mekhanika Kompoz. Mater. Konstr. 2011, № 2. C. 177-183.
H. Hohenberg, W. Kohn. Inhomogeneous electron gas. Phys. Rev. 1964, 136, B864-71.
W. Kohn, J.L. Sham. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. 1965, 140, A1133-38.
M.L. Cohen, V. Heine. Pseudopotential theory of cohesion and structure. In Solid State Physics, V. 24, P. 250. Academic Press, New York, 1970.
M. Fuchs, M. Scheffler Ab initio pseudopotentials for electronic structure calculations of poly atomic systems using density-functional theory. Comp. Phys. Commun. 1999. 119. p. 67-165.
N. Troullier, J.L. Martins. Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B. 1991. V. 43. P. 1993-2006.
J.P. Perdew, A. Zunger. Self-interaction correction to density functional approximation for many-electron systems. Phys. Rev. B. 1981. 23. p. 5048-5079.
M.YU. Gutkin, A.L. Kolesnikova, S.A. Krasnitskiy, A.E. Romanov. Petli dislokatsiy nesootvetstviya v kompozitnykh nanochastitsakh tipa yadro-obolochka. Fizika tverdogo tela, 2014, tom 56, vyp. 4, s. 695-702.
Chien-Chun Chen, Chun Zhu, E.R. White, Chin-Yi Chiu, M. C. Scott, B. C. Regan, L. D. Marks, Yu Huang, Jianwei Miao. Three dimensional imaging of dislocations in nanoparticles at atomic resolution, Nature, 2013, 496, p. 74-77.
R. W. Nunes, J. Bennetto, and D. Vanderbilt. Atomic structure of dislocation kinks in silicon. Phys. Rev. B, 1998, 57, p. 10388-10397.
C. Woodward, D. R. Trinkle, L. G. Hector, Jr., D. L. Olmsted. Prediction of dislocation cores in aluminum from density functional theory. Phys.Rev.Lett. 2008, 100, p. 045507(4).
J.A Yasi, T. Nogaret, D. R. Trinkle, Y. Qi, L. G. Hector Jr, W.A. Curtin. Basal and prism dislocation cores in magnesium: comparison of first-principles and embedded-atom-potential methods predictions. Modelling and Simulation in Materials Science and Engineering, 2009, 17, p. 055012(13).
M. Beckstedte, A. Kley, J. Neugebauer, M. Scheffler. Density functional theory calculations for poly-atomic systems: electronic structure, static and elastic properties and ab initio molecular dynamics. Comp. Phys. Commun. 1997, 107, p. 187-205.
V.G. Zavodinsky. Small tungsten carbide nanoparticles: Simulation of structure, energetic, and tensile strength. Int. J. Refract. Metals and Hard Mater. 2010. 28. p. 446-450.
V.G. Zavodinskiy. Mekhanicheskie kharakteristiki nanorazmernykh prosloek kobal ta v tverdykh splavakh WC/Co. Mekhanika Kompoz. Mater. Konstr. 2011, № 2. C. 177-183.
H. Hohenberg, W. Kohn. Inhomogeneous electron gas. Phys. Rev. 1964, 136, B864-71.
W. Kohn, J.L. Sham. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. 1965, 140, A1133-38.
M.L. Cohen, V. Heine. Pseudopotential theory of cohesion and structure. In Solid State Physics, V. 24, P. 250. Academic Press, New York, 1970.
M. Fuchs, M. Scheffler Ab initio pseudopotentials for electronic structure calculations of poly atomic systems using density-functional theory. Comp. Phys. Commun. 1999. 119. p. 67-165.
N. Troullier, J.L. Martins. Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B. 1991. V. 43. P. 1993-2006.
J.P. Perdew, A. Zunger. Self-interaction correction to density functional approximation for many-electron systems. Phys. Rev. B. 1981. 23. p. 5048-5079.
Keywords:
modeling, nanosystems, deployment, silicon, magnesium.
Related Articles
Development of Functional Nanomaterials Based on Nanoparticles and Polymer Nanostructures Pages: 11-17 DOI: 10.33693/2313-223X-2021-8-2-11-17 Issue №19121
Energetics and Elastic Properties of Large Nano-objects: Orbital-free Approach on the Basis of the Density Functional Theory
orbital-free approach
all-electron potential
density functional theory
modeling
nanomaterials
Show more
Socio-economic Research Pages: 77-82 DOI: 10.33693/2223-0092-2022-12-6-77-82 Issue №22403
Modeling of a System for Assessing the Sustainability of Regional Development, Taking Into Account the Conditions for the Effective Implementation of Public Administration Regulations and the Functioning of Scientific Institutions
sustainable development
assessment system
regional development
modeling
public administration regulations
Show more
14. DIFFERENT Pages: 268-272 Issue №16787
Ontology and graph databases
ontology
graph databases
knowledge bases
modeling
Show more
14. INNOVATION AND INVESTMENT MANAGEMENT Pages: 157-162 Issue №5518
THE ROLE OF MODELING IN THE MANAGEMENT OF COMPETITIVE AND SUSTAINABLE DEVELOPMENT OF INNOVATIVE BUSINESS STRUCTURES
modeling
management
competitiveness
the development of a competitive
sustainable development
Show more
REGIONAL AND SECTORAL ECONOMICS Pages: 260-265 Issue №24576
Application of a Nonparametric Method for Assessing the Cointegration of the Indices of Change in Capital Rate, Return on Assets and Labor Productivity
cointegration
modeling
non-parametric method
labor productivity
capital-labor ratio
Show more
6. Criminology Pages: 183-186 Issue №3132
Planning and modeling of measures to combat organized crime: features methodologies and perspectives
planning against crime
modeling
methodology
a systematic approach
quantitative and qualitative characteristics
Show more
5. Criminal; Criminal enforcement law Pages: 101-109 Issue №4748
Methodological approaches to the construction of the criminal law and criminological models of organized crime
criminal policy
organized crime
modeling
the programme of the fight against crime
crime statistics
Show more
5. MATHEMATICAL AND INSTRUMENTAL METHODS OF ECONOMICS Pages: 148-153 Issue №18204
Development of the indicative system for assessing the «happiness» level using global indexes, including human capital
Happiness Index
regression analysis
correlation
modeling
forecasting
Show more
MATERIALS SCIENCE AND MATERIALS TECHNOLOGY Pages: 146-150 Issue №11955
MECHANICAL PROPERTIES OF NANOSCALE COATINGS ON THE BASE OF TI, TIN И ZRN
the young's modulus
the shear modulus
modeling
tensile surface
cracked
Show more
6. CONDENSED MATTER PHYSICS Pages: 107-113 Issue №9675
COMPUTER MODELING OF SHEAR RUPTURE IN TITANIUM AS THE INITIAL STAGE OF THE HOMOGENEOUS SURFACES FRICTION
modeling
the theory of density functional
the method of pseudopotential
shear destruction
Titan
Show more