DURABILITY INVESIGATION OF BOUNDARIES BETWEEN GRAINS OF ALUMINUM DOPED WITH DIFFERENT IMPURITIES
( Pp. 18-21)
More about authors
Zavodinsky Victor G.
Dr. Sci. (Phys.-Math.), Professor; leader-researcher
Khabarovsk branch at Institute of Applied Mathematics of the Far Eastern branch of the Russian Academy of Sciences
Khabarovsk, Russian Federation Kabaldin Yuri Georgievich doktor tehn. nauk, professor
Nizhny Novgorod State Technical University
Khabarovsk branch at Institute of Applied Mathematics of the Far Eastern branch of the Russian Academy of Sciences
Khabarovsk, Russian Federation Kabaldin Yuri Georgievich doktor tehn. nauk, professor
Nizhny Novgorod State Technical University
Abstract:
The density functional theory and the pseudopotential method are used to study reaction of grain boundaries in aluminum (pure and doped with Mg, P, Sc, Zr and Ti). It was shown that impurities can increase or decrease the tensile strength and the elongation limit. The best effect was obtained for doping with zirconium and titanium; the worst effect gives phosphorus.
How to Cite:
Zavodinsky V.G., Kabaldin Y.G., (2017), DURABILITY INVESIGATION OF BOUNDARIES BETWEEN GRAINS OF ALUMINUM DOPED WITH DIFFERENT IMPURITIES. Computational Nanotechnology, 3 => 18-21.
Reference list:
S. Ogata, H. Kitagawa, Y. Maegawa, and K. Saitoh, Ab-initio analysis of aluminum 5 grain boundaries - fundamental structures and effects of silicon impurity. Comput. Mater. Sci. 7, 271 (1994).
C.E. Caicedo-Martinez. E.V. Koroleva. G.E. Thompson. P. Skeldon. K. Shimizu. G. Hoellrigl. C. Campbell. E. McAlpine. Corrosion Science Volume 44(11), 2002, 2611-2620.
Guang-Hong Lu, Ying Zhang, Shenghua Deng, Tianmin Wang, Masanori Kohyama, Ryoichi Yamamoto, Feng Liu, Keitaro Horikawa, and Motohiro Kanno Origin of intergranular embrittlement of Al alloys induced by Na and Ca segregation: Grain boundary weakening. Phys. Rev. B 73, 224115 2006.
Y. Zhang, G. Lu, T. Wang, S. Deng, X. Shu, M. Kohyama, and R. Yamamoto, First-principles study of the effects of segregated Ga on an Al grain boundary J. Phys.: Condens. Matter. 18, 5121 (2006).
M. Mantina, S. L. Shang, Y. Wang, L. Q. Chen, and Z. K. Liu. 3d transition metal impurities in aluminum: A first-principles study. Phys. Rev. B 80, 184111(7) (2009).
T. Uesugi, K. Higashi, Solute segregation at 11 (113) 110 grain boundary and effect of the segregation on grain boundary cohesion in aluminum from first principles , Materials Science Forum, 654-656, (2010) 942-945.
V.I. Razumovskiy, YU.KH. Vekilov, I.M. Razumovskiy, A.V. Ruban, V.N. Butrim, V.N. Mironenko. Vliyanie legiruyushchikh elementov i primesey na svoystva poverkhnostey razdela v alyuminievykh splavakh. Fizika tverdogo tela, 2011, 53 (11), 2081-2085.
Beckstedte M., Kley A., Neugebauer J., Scheffler M. Density functional theory calculations for poly-atomic systems: electronic structure, static and elastic properties and ab initio molecular dynamic. Comp. Phys. Commun. 1997, V. 107. 187-205.
Hohenberg H., Kohn W. Inhomogeneous Electron Gas. Phys. Rev. 1964; 136; B 864-71.
Kohn W., Sham J.L. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. 1965; 140; A1133-38.
Cohen ML, Heine V. Pseudopotential theory of cohesion and structure. In: Ehrenreich H, Seitz F, Turnbull D, editors. Solid State Physics, New York: Academic Pres; 1970; 24; 38-249.
Zavodinskiy V.G. Komp yuternoe modelirovanie nanochastits i nanosistem. Moskva, FIZMATLIT, 2013, 176 s.
Monkhorst H.J., Pack J.D. Special points for Brillouin-zone integrations. Phys. Rev. D. 1976, 3, 5188-5192.
Fuchs M., Scheffler M. Ab initio pseudopotentials for electronic structure calculations of poly-atomic systems using density functional theory. Comp. Phys. Commun. 1999, V. 119. 67-165.
Carlos Fiolhais, L.M. Almeida, C. Henriques Extraction of aluminium surface energies from slab calculations: perturbative and non-perturbative approaches. Progress in Surface Science 74 (2003) 209-217.
Zavodinskiy V.G., Kabaldin YU.G. Kvantovo-mekhanicheskoe issledovanie vliyaniya primesey (C i P) na prochnostnye kharakteristiki ferrita ( -Fe). Computational nanotechnology, 2017, №1, 36-38.
Zavodinsky V.G. Small tungsten carbide nanoparticles: Simulation of structure, energetic, and tensile strength. Int. J. of Refrac. Met. Hard Mater. 2010, 28, 446-450.
C.E. Caicedo-Martinez. E.V. Koroleva. G.E. Thompson. P. Skeldon. K. Shimizu. G. Hoellrigl. C. Campbell. E. McAlpine. Corrosion Science Volume 44(11), 2002, 2611-2620.
Guang-Hong Lu, Ying Zhang, Shenghua Deng, Tianmin Wang, Masanori Kohyama, Ryoichi Yamamoto, Feng Liu, Keitaro Horikawa, and Motohiro Kanno Origin of intergranular embrittlement of Al alloys induced by Na and Ca segregation: Grain boundary weakening. Phys. Rev. B 73, 224115 2006.
Y. Zhang, G. Lu, T. Wang, S. Deng, X. Shu, M. Kohyama, and R. Yamamoto, First-principles study of the effects of segregated Ga on an Al grain boundary J. Phys.: Condens. Matter. 18, 5121 (2006).
M. Mantina, S. L. Shang, Y. Wang, L. Q. Chen, and Z. K. Liu. 3d transition metal impurities in aluminum: A first-principles study. Phys. Rev. B 80, 184111(7) (2009).
T. Uesugi, K. Higashi, Solute segregation at 11 (113) 110 grain boundary and effect of the segregation on grain boundary cohesion in aluminum from first principles , Materials Science Forum, 654-656, (2010) 942-945.
V.I. Razumovskiy, YU.KH. Vekilov, I.M. Razumovskiy, A.V. Ruban, V.N. Butrim, V.N. Mironenko. Vliyanie legiruyushchikh elementov i primesey na svoystva poverkhnostey razdela v alyuminievykh splavakh. Fizika tverdogo tela, 2011, 53 (11), 2081-2085.
Beckstedte M., Kley A., Neugebauer J., Scheffler M. Density functional theory calculations for poly-atomic systems: electronic structure, static and elastic properties and ab initio molecular dynamic. Comp. Phys. Commun. 1997, V. 107. 187-205.
Hohenberg H., Kohn W. Inhomogeneous Electron Gas. Phys. Rev. 1964; 136; B 864-71.
Kohn W., Sham J.L. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. 1965; 140; A1133-38.
Cohen ML, Heine V. Pseudopotential theory of cohesion and structure. In: Ehrenreich H, Seitz F, Turnbull D, editors. Solid State Physics, New York: Academic Pres; 1970; 24; 38-249.
Zavodinskiy V.G. Komp yuternoe modelirovanie nanochastits i nanosistem. Moskva, FIZMATLIT, 2013, 176 s.
Monkhorst H.J., Pack J.D. Special points for Brillouin-zone integrations. Phys. Rev. D. 1976, 3, 5188-5192.
Fuchs M., Scheffler M. Ab initio pseudopotentials for electronic structure calculations of poly-atomic systems using density functional theory. Comp. Phys. Commun. 1999, V. 119. 67-165.
Carlos Fiolhais, L.M. Almeida, C. Henriques Extraction of aluminium surface energies from slab calculations: perturbative and non-perturbative approaches. Progress in Surface Science 74 (2003) 209-217.
Zavodinskiy V.G., Kabaldin YU.G. Kvantovo-mekhanicheskoe issledovanie vliyaniya primesey (C i P) na prochnostnye kharakteristiki ferrita ( -Fe). Computational nanotechnology, 2017, №1, 36-38.
Zavodinsky V.G. Small tungsten carbide nanoparticles: Simulation of structure, energetic, and tensile strength. Int. J. of Refrac. Met. Hard Mater. 2010, 28, 446-450.
Keywords:
Ab initio modeling, aluminium, the grain boundaries, tensile strength, the influence of impurities.