ABOUT CONSTRUCTION OF ANALYTICAL DEFINITION OF k-VALUE THRESHOLD FUNCTION
( Pp. 5-13)
More about authors
Burdeliov Alexander Vladimirovich
st. prepodavatel kafedry matematicheskogo modelirovaniya i analiza dannyh fakulteta prikladnoy matematiki i informatiki
Belarusian State University Nikonov Vladimir G. Doctor of Engineering, Professor; member at the Presidium
Russian Academy of Natural Sciences
Moscow, Russian Federation
Belarusian State University Nikonov Vladimir G. Doctor of Engineering, Professor; member at the Presidium
Russian Academy of Natural Sciences
Moscow, Russian Federation
Abstract:
Task: In [2] proposed a few methods for finding coefficients of linear form of Boolean threshold function. These methods are founding on using coefficients of characteristic vector, as first approximation of coefficients of linear form, and then a few algorithms for correction of this approximation. In this paper submitted for consideration the question of finding coefficients of linear form of k-value threshold function. Model: In this paper submitted a few interpretations of closeness of two k-value functions by definition of multiplication, differential and quadratic coefficients, also expansion coefficients and increase coefficients. Considered potential of these coefficients to approximate the coefficients of linear form and possibility of further correction. Findings: In this paper made the conclusion that expansion coefficients and increase coefficients are better for approximation the coefficients of linear form. Submitted algorithm for finding coefficients of linear form of k-value threshold function funding on increase coefficients.
How to Cite:
Burdeliov A.V., Nikonov V.G., (2015), ABOUT CONSTRUCTION OF ANALYTICAL DEFINITION OF K-VALUE THRESHOLD FUNCTION. Computational Nanotechnology, 2 => 5-13.
Reference list:
Butakov E.A. Metody sinteza releynykh ustroystv iz porogovykh elementov. Moskva, Energiya. 1970.
Dertouzos M. Porogovaya logika. Moskva, Mir. 1967.
Zuev A.YU. Porogovye funktsii i porogovye predstavleniya bulevykh funktsiy. // Matematicheskie voprosy kibernetiki , vypusk 5, 1994 g.
Nikonov V.G. Porogovye predstavleniya bulevykh funktsiy // Obozrenie prikladnoy i promyshlennoy matematiki , 1994, T. 1, vyp. 3.
Nikonov V.G., Nikonov N.V. Osobennosti porogovykh predstavleniy k-znachnykh funktsiy // Trudy po diskretnoy matematike , 2008, T. 11.
Val tsev V.B., Grigor ev V.R., Nikonov V.G. Nekotorye strukturnye printsipy organizatsii vysshikh funktsiy mozga // Neyrokomp yuter kak osnova myslyashchikh EVM. - M.: Nauka, 1993.
KHachiyan L.G. Polinomial nye algoritmy v lineynom programmirovanii // ZHurnal vychislitel noy matematiki i matematicheskoy fiziki , 1980, T 20.
Zolotykh N.YU. Rasshifrovka porogovoy funktsii, zadannoy rasshirennym orakulom// Vestnik Nizhegorodskogo universiteta im. N.I. Lobachevskogo, 2012, №3(1).
Dertouzos M. Porogovaya logika. Moskva, Mir. 1967.
Zuev A.YU. Porogovye funktsii i porogovye predstavleniya bulevykh funktsiy. // Matematicheskie voprosy kibernetiki , vypusk 5, 1994 g.
Nikonov V.G. Porogovye predstavleniya bulevykh funktsiy // Obozrenie prikladnoy i promyshlennoy matematiki , 1994, T. 1, vyp. 3.
Nikonov V.G., Nikonov N.V. Osobennosti porogovykh predstavleniy k-znachnykh funktsiy // Trudy po diskretnoy matematike , 2008, T. 11.
Val tsev V.B., Grigor ev V.R., Nikonov V.G. Nekotorye strukturnye printsipy organizatsii vysshikh funktsiy mozga // Neyrokomp yuter kak osnova myslyashchikh EVM. - M.: Nauka, 1993.
KHachiyan L.G. Polinomial nye algoritmy v lineynom programmirovanii // ZHurnal vychislitel noy matematiki i matematicheskoy fiziki , 1980, T 20.
Zolotykh N.YU. Rasshifrovka porogovoy funktsii, zadannoy rasshirennym orakulom// Vestnik Nizhegorodskogo universiteta im. N.I. Lobachevskogo, 2012, №3(1).
Keywords:
threshold k-valued function, being the linear shape threshold function, threshold logic.