FORMATION OF MICRO- AND NANOSTRUCTURES ON THE SURFACE OF LASER-CREATED MOLTEN LAYER WITH INVERTED NORMAL TEMPERATURE GRADIENT
( Pp. 28-39)

More about authors
Emel’yanov Vladimir I. the Doctor of Science in Physics and Mathematics, professor. Physics Faculty of Moscow State University, Moscow, Russia
Moscow State University
For read the full article, please, register or log in
Abstract:
A nonlinear two-dimensional hydrodynamic (HD) equation of Kuramoto-Sivashinsky(KS) type for the thickness of the laser pulse-induced viscous molten layer on solid base is derived in the long wavelength and weak nonlinearity approximation. Linear stability analysis shows that under the condition that the temperature gradient in the surface laser-melted layer is directed from the surface to the bulk, the thermocapillar or evaporative hydrodynamic instability sets in, that leads to the formation of surface relief structures with dimensions proportional to the thickness of the molten layer. Computer simulations predict the successive formation, in linear and nonlinear regimes, of extended lamellar-like, disordered and hexagonal periodic structures of the surface relief when the time of irradiation is increased. Under tight laser light focusing, in the quasi-nonlinear regime, phase synchronization of Fourier harmonics of the surface relief, occurring due to the three HD mode interactions, is shown to lead to formation of holes or nanobumps (nanojets). Crown-like computer solutions of the HDKS equation are obtained in the case of Gaussian intensity distribution in the laser beam.
How to Cite:
Emel’yanov V.I., (2014), FORMATION OF MICRO- AND NANOSTRUCTURES ON THE SURFACE OF LASER-CREATED MOLTEN LAYER WITH INVERTED NORMAL TEMPERATURE GRADIENT. Computational Nanotechnology, 2: 28-39.
Reference list:
K. Miyazaki, Nanophotonics and Nanofabrication, ed. by M. Ohtsu (Wiley-VCH, Weinheim, 2009).
Y. Kuramoto, Chemical Oscillations, Waves and Turbulence (Springer, Berlin, 1984).
G.I. Sivashinsky, Ann. Rev. Fluid Mech. 15, 179 (1983).
J. Munoz-Garcia, L. Vazquez, R. Cuerno, J.A. Sanchez-Garcia, M.Castro and R.Gago, In Lecture Notes on Nanoscale Science and Technology, Z.Wang, Ed., Springer, Heidelberg (2009).
A.G. Limonov, Mathematical Models and Computer Simulations, 3, 149 (2011).
V.I. Emel yanov , Laser Physics, 19, 538 (2009).
V.I. Emel yanov, in Laser ablation in liquids, Principles and applications in the preparation of nanomaterials, edited by G. Yang (Pan Stanford Publ., Singapore), Chap. 1, pp. 1-109 (2012).
V.I. Emel yanov, A.S. Kuratov, Eur. Phys. J. B 86, 381 (2013).
A. Oron, S.H. Davis and S.G. Bankoff, Rev. Mod. Phys., 69, 931(1997).
V. I. Emel yanov, Laser Physics, 21, N 1, 222 (2011).
X. Y Chen, Y Lin, J. M. Liu and Z.G Liu, Appl. Phys. A, 94, 649 (2009).
P. P. Pronko, S. K. Dutta, D. Du and R. K. Singh J. Appl. Phys. 78, 6233(1995).
Qiming Zhang, Han Lin, Baohua Jia, Lei Xu and Min Gu, Optics Express, 18, 6885(2010).
M. Gedvilas, G. Raciukaitis, and K. Regelskis, Appl.Phys. A 93, 203 (2008).
P. Molian, Zh. Lin, Q.Zou, J. of Nanoscience and Nanothnology, 8, 2163 (2008).
J. Siegel, J. Solis, C. N. Afonso, F. Vega, J. Bankmann, O. Martinez Sacristan, K. Sokolowski-Tinten, J.Appl. Phys. 89, 3642(2001).
V. I. Emel yanov, D. A. Zayarniy, A. A. Ionin, I. V. Kiseleva, S. I. Kudryashov, S. V. Makarov, T. H. T. Nguyen, and A. A. Rudenko, JETP Letters, 99, No. 9, 518(2014).
A.J.Bernoff, A.L.Bertozzi, Physica D: Nonlinear Phenomena, 85, N3, 375 (1995).
Yu.N. Kulchin, O.B. Vitrik, A.A. Kuchmizhak, A.V. Nepomnyashchii,1 A.G. Savchuk,A.A. Ionin, S.I. Kudryashov, and S.V.Makarov, Optics Letters, 38, N 9, 1452 (2013).
V. I. Emel yanov, P. A. Danilov, D. A. Zayarnyi, A. A. Ionin, S. I. Kudryashov, S. V. Makarov, A. A. Rudenko, D. I. Shikunov, and V. I. Yurovskikh, JETP Letters, 100, No. 3, 145(2014).
S. Nakamura and T. Hibiya, Int. J. Thermophys.,13,1061 (1992).
A. A. Ionin, S. I. Kudryashov, L. V. Seleznev, D. V. Sinitsyn, A. F. Bunkin, V. N. Lednev, and S. M. Pershin, J. Exp. Theor. Phys., 116, 347 (2013).
I. A. Artyukov, D. A. Zayarnyi, A. A. Ionin, S. I. Kudryashov, S. V. Makarov, and P. N. Saltuganov, JETP Lett. 99, 51 (2014).
Yu. N. Kulchin, O. B. Vitrik, A. A. Kuchmizhak, V. I. Emel yanov, A. A. Ionin, S. I. Kudryashov, and S. V. Makarov, Phys. Rev.E, 90, 023017 (2014)
H.A. Haus, IEEE J. on Selected Topics in Quantum Electronics, 6, N6,1173 (2000).
V. I. Emel yanov and D. M. Seval nev, Laser Physics, 21, No. 3, 566(2011).
V.I. Emel yanov, A.S. Kuratov, Eur. Phys. J. B 86, 270 (2013).
Keywords:
pulsed laser irradiation of solids, laser-induced surface melt, inverted normal temperature gradient, thermocapillar and evaporative instability of surface relief, modified hydrodynamic Kuramoto-Sivashinsky equation, computer simulations of HDKS equation, lamellar, disordered, and hexagonal periodic surface structures, nanoholes, nanobumps (nanojets) and crowns.