IMPORTANCE OF RADIAL ELECTRIC FIELDS FOR MAGNETICALLY CONFINED PLASMAS
( Pp. 82-90)

More about authors
Guido Van Oost professor kafedry prikladnoy fiziki Gentskogo universiteta, Belgiya; professor-sovmestitel kafedry fiziki plazmy NIYaU «MIFI», Moskva, Rossiya, professor-sovmestitel NIU «Moskovskiy energeticheskiy institut», Moskva, Rossiya.
Department of Applied Physics, Ghent University, Belgium; National Research Nuclear University «MEPHI»; National Research University «Moscow Power Engineering Institute»
Abstract:
The importance of radial electric fields in magnetic confinement devices is outlined. It has been demonstrated in limiter - and divertor tokamaks, helical devices and mirror machines with a variety of discharge - and heating conditions as well as edge biasing schemes that improved confinement is often associated with strongly radially varying profiles of Er, and that E × B velocity shear turbulence stabilisation is a robust and universal mechanism which plays a major role in the formation and sustainment of transport barriers in magnetic confinement devices. Emphasis is put on the relation between the generation of electron internal transport barriers and the concept of profile consistency developed by Yu.N. Dnestrovskij, in which the plasma pressure and temperature profiles have a tendency to organize themselves into an ‘universal’ profile shape, in agreement with the plasma minimum free energy principle.
How to Cite:
Guido V.O., (2018), IMPORTANCE OF RADIAL ELECTRIC FIELDS FOR MAGNETICALLY CONFINED PLASMAS. Computational Nanotechnology, 1 => 82-90.
Reference list:
Budker T. in Plasma Physics and the Problem of Controlled Thermonuclear Reactions, edited by M.A. Leontovich, Pergamon Press, New York, 1, p. 78 (1951).
Stix T. Phys. Fluids 14, 692 (1971). Roth J.R. et al. Phys. Rev. Letters, 22, 1450 (1978).
Roth J.R. Proc. IAEA Technical Conference Meeting on Tokamak Plasma Biasing. Montreal. Vienna: IAEA, 1992. R. 132.
Gorman J.G. and Rietjens L.H. Phys. Fluids, 9, 2504 (1966).
Strait E.J. Nucl. Fusion, 21, 943 (1981).
Taylor R.J. et al. In Plasma Physics and Controlled Thermonuclear Research, 3 (IAEA Vienna), p. 251 (1982).
W7-A team et al. Proc. 3rd Joint Varenna-Grenoble Int. Symp. Heating in Toroidal Plasma, Grenoble, 2, p. 813 (1982).
Hosea J.C. et al. Phys. Rev. Letters, 30, 839 (1973).
Razumova K.A. Plasma Physics and Controlled Fusion, 26, 37 (1984); and Bugarya V.I., Gorshkov A.V., Grashin S.A. et al. Nucl. Fusion, 25, 1707 (1985).
Murakami M. et al. In Plasma Physics and Controlled Nuclear Fusion Research, 1 (IAEA Vienna), p. 87 (1984).
Wagner F. et al. Phys. Rev. Letters, 49, 1408 (1982). Taylor R.J. et al. Phys. Rev. Letters, 63, 2365 (1989).
Groebner R.J., Burrell K.H. and Seraydarian R.P. Phys. Letters, 64, 3015 (1990). Itoh S.-I. and Itoh K. Phys. Rev. Letters, 60, p. 2276 (1988);
K. Itoh, S.-I. Itoh, A. Fukuyama, Transport and Structural Formation in Plasma , I.O.P. Publishing, Bristol (1999).
Shaing K.C., Crume E.C. JR. and Houlberg W.A. Phys. Rev. Letters, 63, 2369 (1989).
Tendler M. Plasma Physics and Controlled Fusion, 39, B371 (1997).
Weynants R.R. et al. Proc. 17th Eur. Conf. On Controlled Fusion and Plasma Physics, Amsterdam, 1, (Europhysics Conf. Abstr. 14B), p. 287 (1990).
Weynants R.R., Van Oost G., et al. Nucl. Fusion, 32, p. 837 (1992).
Weynants R.R. and Van Oost G. Plasma Physics and Controlled Fusion, 35, B177 (1993).
Burrell K.H. Phys. Plasmas, 4, 1499 (1997). Ida K. Plasma Physics and Controlled Fusion, 40, 1429 (1998).
Proceedings of the Technical Committee Meeting on H-mode Physics, Kloster Seeon, Germany, September 22-24, 1997, in Plasma Physics and Controlled Fusion 40, Nr. 5.
Proceedings of the Workshop on Role of Electric Fields in Plasma Confinement and Exhaust , Prague, July 6-8, 1998, in Czechoslovak J of Phys., 48, Suppl. S3, 1998;
Proceedings of the Second Europhysics Workshop on Role of Electric Fields in Plasma Confinement and Exhaust , Maastricht, June 19-20, 1999, Czechoslovak J. of Phys., 49, Suppl. S3, 1999;
Proceedings of the Third Europhysics Workshop on Role of Electric Fields in Plasma Confinement and Exhaust , Budapest, June 18-19, 2000, in Czechoslovak J. of Phys., 50, Nr. 12, 2000;
Proceedings of the Fourth Europhysics Workshop on Role of Electric Fields in Plasma Confinement and Exhaust , Funchal, Madeira, June 24-25, 2001, in Czechoslovak J. of Phys., 51, Nr. 10, 2001;
Proceedings of the Fifth Europhysics Workshop on Role of Electric Fields in Plasma Confinement and Exhaust , Montreux,, June 23-24, 2002, in Czechoslovak J. of Phys., 52, Nr. 10, 2002.
Proceedings of the Workshop on Electric Fields, Structures and Relaxation in Edge Plasmas , St. Petersburg, June 13-14, 2003, in Czechoslovak J. of Phys., 53, Nr. 10, 2003;
Proceedings of the Workshop on Electric Fields, Structures and Relaxation in Edge Plasmas , Nice, October 26-27, 2004, in Czechoslovak J. of Phys., 55, Nr. 3, 2005;
Proceedings of the Workshop on Electric Fields, Structures and Relaxation in Edge Plasmas , Tarragona, July 3-4, 2005, in Czechoslovak J of Phys., 55, Nr. 12, 2005;
Proceedings of the Workshop on Electric Fields, Structures and Relaxation in Edge Plasmas , Rome, June 26-27, 2006, in Czechoslovak J. of Phys., 56, Nr. 12, 2006;
Proceedings of the Workshop on Electric Fields, Structures and Relaxation in Plasmas , Warsaw, July 8-9, 2007.
Hahm T.S. and Burrell K.H. Phys. Plasmas, 2, 1648 (1995).
Burrell K.H. Plasma Physics and Controlled Fusion, 36, A291 (1994).
Jachmich S. et al. Plasma Physics and Controlled Fusion, 40, 1105 (1998).
Moyer R.A. et al. Phys. Plasmas, 2, 2397 (1995).
Hugill J. Plasma Physics and Controlled Fusion, 36, B173 (1994).
BurrelL K.H. et al. Phys. Plasmas, 1, 1536 (1994).
Weynants R.R., Jachmich S. and Van Oost G. Plasma Physics and Controlled Fusion, 40, 635 (1998).
Boedo J. et al. Czechoslovak J of Phys., 48, Suppl. S3, 99 (1998).
Lazarus E.A. et al. Phys. Rev. Letters, 77, 2714 (1996).
Ushigusa K. and the JT-60 team, Plasma Physics and Controlled Nuclear Fusion Research, 1 (IAEA Vienna), 37 (1996).
Gormezano C. in Plasma Physics and Controlled Fusion, 41, B367 (1999).
Fujita T. and the JT-60 team, Phys. Rev. Letters, 78, 2377 (1997).
Mazzucato E. et al. Phys. Rev. Letters, 77, 3145 (1996).
Synakowski E. et al. Phys. Plasmas, 4, 1736 (1997).
Koide Y. et al. Plasma Physics and Controlled Fusion, 38, 1011 (1996).
Kamada Y. and the JT-60 team, Plasma Physics and Controlled Fusion, 41, B77 (1999).
Greenfield C.M., Murakami M., Zeng L. Fusion Engineering and Design 81, 2807 (2006).
Zarnstorff M.C. et al. Phys. Plasmas, 4, 1097 (1997).
Melnikov A.V. et al. Heavy ion beam probing - diagnostics to study potential and turbulence in toroidal plasmas Nucl. Fusion 57 (2017) 072004.
Razumova K.A. Czechoslovak J. of Phys., 49, Suppl. S3,7 (1999).
Van Oost G. et al. J. Plasma Fusion Res. Series, 4, 29 (2001).
Van Oost G. and Tendler M. Plasma Physics and Controlled Fusion, 44, 1761 (2002).
Van Oost G. et al. Plasma Physics and Controlled Fusion, 45, 621 (2003), and references therein.
Donn A.J.H., Melnikov A.V., Van Oost G. Czechoslovak J. of Physics, 52, 1077 (2002).
Van Oost G. Advanced probe edge diagnostics for fusion devices , Transactions of Fusion Technology (February 2012) 61, 2T, 365-375.
Jachmich S., Van Schoor M., Weynants R.R. Proc. 29th Eur. Conf. On Controlled Fusion and Plasma Physics, Montreux, (Europhysics Conf. Abstr. 26B), O-1.01 (2002).
Crombe K. et al. Phys. Rev. Lett., 95, 155003 (2005).
Tendler M., Van Oost G. and St ckel J. Comments on Modern Physics, 2, N6,C 203 (2002).
Dnestrovski YU.N. Self-Organization in hot Plasmas (The Canonical Profile Transport Model), Springer International Publishing (2014), and YU.N. Dnestrovski et al. Nucl. Fusion, 46 953 (2006).
Razumova K.A. et al. Nucl. Fusion, 44, 1067 (2004).
Razumova K.A. et al. Plasma Phys. Control. Fusion, 48, 1373 (2006).
Baranov YU.F. et al. Plasma Phys. Control. Fusion, 46, 1181 (2004).
Waltz R.E. et al. Phys. Plasmas, 13, 052301(2006).
Brakel R. et al. Nucl. Fusion, 42, 903 (2002).
Van Oost G. et al. Plasma Physics and Controlled Fusion, 49, A29 (2007).
Special issue on Experimental studies of zonal flow and turbulence, Plasma Phys. Control. Fusion, 48, 1181 (2006).
Van Oost G. et al. Nucl.Fusion, 47, 378 (2007), and references therein. Hidalgo C., Pedrosa M.A., et al.
Plasma Physics and Controlled Fusion, 46, p. 287, (2004).
Finken K.H. et al. Fusion Eng. Des., 37, 335(1997).
Kraemer-Flecken A. et al. Nucl.Fusion, 46, 730 (2006).
Bugarya V.I., Gorshkov A.V., Grashin S.A. i dr. Elektricheskiy potentsial i skorost toroidal nogo i poloidal nogo vrashcheniya v tokamake // Pis ma v ZHETF. 1983. T. 38, № 7. S. 337-341.
Melnikov A.V., Andreev V.F., Grashin S.A., et al. Nucl. Fusion, 53, 093019 (2013).
Melnikov A.V., Hidalgo C., Eliseev L.G., et al. Nucl. Fusion, 51, 083043 (2011).
Mel nikov A.V. Elektricheskiy potentsial v plazme toroidal nykh ustanovok. Monografiya. M.: NIYAU MIFI, 2015. 260 s.
Melnikov A.V. et al. Plasma Potential Evolution Study by HIBP Diagnostic During NBI Experiments in the TJ-II Stellarator, Fusion Science and Technology, 51, № 1, (2007), pp. 31-37.
Mel nikov A.V., Dyabilin K.S., Eliseev L.G., Lysenko S.E., Dnestrovskiy YU.N. Izmereniya i modelirovanie elektricheskogo potentsiala v stellaratore TJ-II // VANT. Ser.: Termoyadernyy sintez. 2011. № 3. S. 54-73.
Dnestrovskij Yu.N., Melnikov A.V., Krupnik L.I., and Nedzelskij I.S. Development of Heavy Ion Beam Probe Diagnostics // IEEE Trans. Plasma Sci. 1994. V. 22, No. 4. P. 310-331.
Melnikov A.V. et al. Plasma Potential Measurements by the Heavy Ion Beam Probe Diagnostic in Fusion Plasmas: Biasing Experiments in the TJ-II Stellarator and T-10 Tokamak // Fusion Science and Technology. 2004. 46. Rp. 299-311.
Mel nikov A.V. Issledovanie elektricheskogo potentsiala termoyadernoy plazmy s magnitnym uderzhaniem // Computational nanotechnology. 2017. Vyp. 2. S. 13-23.
Keywords:
magnetic confinement, the electric field, Shire speed, the canonical profiles.


Related Articles

SCIENTIFIC SCHOOL OF PROFESSOR POPOV A.M. Pages: 13-23 Issue №9675
THE STUDY OF THE ELECTRIC POTENTIAL OF MAGNETICALLY CONFINED FUSION PLASMAS
plasma magnetic confinement plasma diagnostics by heavy ion beam electric potential geodesic acoustic mode
Show more
DIAGNOSTICS OF THERMONUCLEAR PLASMA Pages: 31-57 Issue №11955
THE EVOLUTION OF THE MATHEMATICAL AND TECHNICAL ASPECTS OF HEAVY ION BEAM PROBE PLASMA DIAGNOSTICS
plasma magnetic confinement tokamak stellarator the sounding of the plasma by heavy ion beam
Show more
DIAGNOSTICS OF THERMONUCLEAR PLASMA Pages: 58-61 Issue №11955
CORRECTION OF TOROIDAL DISPLACEMENT OF DIAGNOSTIC HEAVY ION BEAM
plasma magnetic confinement tokamak stellarator the sounding of the plasma by heavy ion beam
Show more
DIAGNOSTICS OF THERMONUCLEAR PLASMA Pages: 62-70 Issue №11955
THE STUDY OF THE ELECTRIC POTENTIAL OF MAGNETICALLY CONFINED FUSION PLASMAS
plasma magnetic confinement tokamak stellarator the sounding of the plasma by heavy ion beam
Show more
PHYSICS OF THERMONUCLEAR PLASMA Pages: 108-113 Issue №11955
GEODESIC ACOUSTIC MODES IN THE TOKAMAKS
plasma magnetic confinement tokamak geodesic acoustic mode DIN
Show more
POWER ENGINEERING Pages: 114-121 Issue №11955
NUCLEAR FUSION AND ITS LARGE POTENTIAL FOR THE FUTURE WORLD ENERGY SUPPLY
global energy fusion magnetic confinement plasma tokamak stellarator
Show more