ABOUT POSSIBILITY OF USING FRACTAL MODELS IN DATA SECURITY SYSTEM CONSTRUCTION
( Pp. 39-49)

More about authors
Zobov Anton I. kandidat tehnicheskih nauk; sotrudnik Fonda
Secure Information Technology Assistance Foundation
Moscow, Russian Federation Nikonov Vladimir G. Dr. Sci. (Eng.), Professor, Member at the Presidium of the Russian Academy of Natural Sciences
Russian Academy of Natural Sciences
Moscow, Russian Federation
For read the full article, please, register or log in
Abstract:
This paper describes construction principles of objects that have fractal nature and analyzes possibilities of its using for generation long sequences. The interest to fractals nowadays is caused by engineering new principles of construction and implementation of data security.
How to Cite:
Zobov A.I., Nikonov V.G., (2017), ABOUT POSSIBILITY OF USING FRACTAL MODELS IN DATA SECURITY SYSTEM CONSTRUCTION. Computational Nanotechnology, 1 => 39-49.
Reference list:
Fatou. Sur les equations fonctionnells. Bulltein de la Soc. Math.de France, 1919.
Julia G., Memoire sur l iteration des fonctions rationnelles. - J. de Mathematiques pures et appliquees, 1918.
Feder E. Fraktaly./M.: Mir, 1991.
Mandel brot B.B. Fraktal naya geometriya prirody./Moskva, 2002.
Kronover R.M. Fraktaly i khaos v dinamicheskikh sistemakh. Osnovy teorii./M.: Postmarket, 2002.
Bozhogin S.V., Parshin D.A. Fraktaly i mul tifraktaly./Izhevsk: NITS Regulyarnaya i stokhasticheskaya dinamika , 2001.
Gurevich V., Volmen G. Teoriya razmernosti./Moskva: IL, 1948.
Kolmogorov A.N. Elementy teoriy funktsiy i funktsional nogo analiza./Moskva: Fizmatlit, 2004.
Bondarenko V.A., Dol nikov V.L. Fraktal noe szhatie izobrazheniy po Barnsli-Sloanu./Avtomatika i telemekhanika. 1994.
Morozov A.D. Vvedenie v teoriyu fraktalov./Moskva-Izhevsk: Institut komp yuternykh issledovaniy, 2002.
Bugrimov A.L., Bychkova D.D., Kuznetsov M.V. Vozmozhnosti variatsii razmernosti fraktal nykh mnozhestv./Vestnik MGOU, 2014.
Akimov O.E. Diskretnaya matematika: logika, gruppy, grafy, fraktaly./Moskva: Izdatel Akimova, 2005.
Kirillov A.A. Povest o dvukh fraktalakh./M.: MTSNMO, 2010.
Keywords:
fractal, protection of information, function complications, threshold function.


Related Articles

Issue №9439
ABOUT THE NEW ALGORITM OF CHARACTERIZATION OF k-VALUED THRESHOLD FUNCTIONS
threshold function k-valued logic characterization of threshold functions growth factors the coefficients of increase
Show more
Issue №6518
ABOUT BIJECTIVITY OF TRANSFORMATIONS DETERMINED BY QUASI-HADAMARD MATRIXES
bijective mapping threshold function quasidemocracy matrix
Show more
Issue №5869
Geometrical approach to the argumentum of bijection of one coordinate-threshold reflection
bijective mapping threshold function multidimensional cones quasidemocracy matrix
Show more
Issue №5869
The constructive method for synthesis of balanced k-valued algebraic threshold functions
multivalued logic threshold function algebraic threshold function balanced function
Show more
Issue №3742
ON A DECOMPOSITION OF BOOLEAN FUNCTIONS REPRESENTED BY QUADRATIC INEQUALITIES
Boolean functions threshold function decomposition quadratic inequalities
Show more
Issue №19706
On the Complexity of Specifying a Symmetric Group of Permutations of Degree 2n in a Threshold Basis on a Promising Element Base
threshold function symmetric group implementation of permutations threshold basis complexity of implementation
Show more
Issue №9439
ABOUT POSSIBILITY OF USING FRACTAL MODELS IN DATA SECURITY SYSTEM CONSTRUCTION
fractal protection of information function complications threshold function
Show more
Issue №11955
SOME ANALOGIES BETWEEN PLASMA AND BIOLOGY
plasma biology phase transitions the size of cells Debye radius
Show more
Issue №11955
MODIFICATION OF A GEOMETRICAL ALGORITHM OF CHARACTERIZATIONk-VALUED THRESHOLD FUNCTIONS
threshold function k-valued logic geometric algorithm the characterization of threshold functions the proof of convergence
Show more