# A NEW STEP ON THE WAY TO MODELING OF BIG NANOSYSTEMS CONTAINED ATOMS OF DIFFERENTS TYPES

( Pp. 30-34)

More about authors

Zavodinsky Victor G.
Doctor of Physics and Mathematics, Professor; leader-researcher at the Khabarovsk Department of the Institute of Applied Mathematicks of the Russian Academy of Sciences. Khabarovsk, Russian Federation. E-mail: vzavod@mail.ru

Institute of Applied Mathematics of the Russian Academy of Sciences

Khabarovsk, Russian Federation Gorkusha Olga A. Candidate of Physics and Mathematics; senior researcher at the Khabarovsk Department of Institute of Applied Mathematics

Institute of Applied Mathematics of the Russian Academy of Sciences

Khabarovsk, Russian Federation Gorkusha Olga A. Candidate of Physics and Mathematics; senior researcher at the Khabarovsk Department of Institute of Applied Mathematics

Abstract:

A new version of the orbital-free method of quantum-mechanics modeling of nanosystems is described in this paper in the framework of the density functional theory. The orbital-free approach can give a possibility to model huge systems (up to millions atoms); however, its development is interfered by difficulties of presentation of the kinetic energy functional. We propose to construct the kinetic energy functional of a complicated system from the functionals of single atoms using some weights the set for the each kind of atoms. On example of the SiC, SiAl, AlC, SiO and CO dimers we demonstrate a possibility of our approach to obtain the equilibrium interatomic distances and dissociation energies for the systems with atoms of different types.

How to Cite:

Zavodinsky V.G., Gorkusha O.A., (2016), A NEW STEP ON THE WAY TO MODELING OF BIG NANOSYSTEMS CONTAINED ATOMS OF DIFFERENTS TYPES. Computational Nanotechnology, 1 => 30-34.

Reference list:

Kohn W., Sham J.L. Self-Consistent Equations including Exchange and Correlation Effects. Phys. Rev. 1965, 140, A1133-A1138.

Hohenbeg H., Kohn W. Inhomogeneous Electron Gas, Physical Review, 1964, 136, B864-B871.

Hung L., Carter E.A. Accurate Simulations of Metals at the Mesoscale: Explicit Treatment of 1 Million Atoms with Quantum Mechanics. Chemical Physics Letters, 2009, 475, 163-170.

Wang Y.A., Carter E.A. Orbital-free kinetic-energy density functional theory. In: Progress in Theoretical Chemistry and Physics. Kluwer, Dordrecht. 2000, 117 p.

Huajie Chen, Aihui Zhou. Orbital-Free Density Functional Theory for Molecular Structure Calculations. Numerical Mathematics: Theory, Methods and Applications, 2008, 1, 1-28.

Baojing Zhou, Ligneres V.L., Carter E.A. Improving the orbital-free density functional theory description of covalent materials. Journal Chemical Physics, 2005, 122, 044103-044113.

Karasiev V.V., Trickey S.B. Issues and challenges in orbital-free density functional calculations. Computational Physics Communications, 2012, 183, 2519-2527.

Karasiev V.V., Chakraborty D., Shukruto O.A., Trickey S.B. Nonempirical generalized gradient approximation free-energy functional for orbital-free simulations. Physical Review B, 88, 161108-161113(R).

Wesolowski T.A. Approximating the kinetic energy functional Ts : lessons from four-electron systems. Molecular Physics, 2005, 103, 1165-1167.

Junchao Xia, Chen Huang, Ilgyou Shin, Carter E.A. Can orbital-free density functional theory simulate molecules The Journal of Chemical Physics, 2012, 136, 084102(13).

Lehtom ki, J., Makkonen, I., Caro, M.A., Harju, A. and Lopez-Acevedo O. (2014) Orbital-free density functional theory implementation with the projector augmented wave method. Journal Chemical Physics, 141 234102(7).

Zavodinsky V.G., Gorkusha O.A. Quantum-Mechanical Modeling without Wave Functions. Physics of the Solid States, 2014, 56(11), 2329-2335.

Zavodinsky V.G., Gorkusha O.A. New Orbital-Free Approach for Density Functional Modeling of Large Molecules and Nanoparticles. Modeling and Numerical Simulation of Material Science, 2015, 5, 39-46.

Zavodinsky V.G., Gorkusha

Fuchs M., Scheffler M. Ab initio pseudopotentials for electronic structure calculations of poly-atomic systems using density-functional theory, Computational Physics Communications, 1999) ,119, 67-98.

Perdew J.P., Zunger A. Self-interaction correction to density functional approximation for many-electron systems, Physical Review B, 1981, 23, 5048-5079.

Ceperley D.M., Alder B.J. Ground state of the electron gas by a stochastic method, Physical Review Letters, 1980, 45. 566-569.

Raghavachari K., Logovinsky V. Structure and bonding in small silicon clusters. Phys. Rev. Lett. 1985, 55, 2853-2856.

Mukhtarov A.P., Normurodov A.B., Sulaymonov N.T., Umarova F.T. Charge States of Bare Silicon Clusters up to Si8 by Non-Conventional Tight-Binding Method. Journal of nano- and electronic physics, 2015, 7, 01012(7).

Nayak S.K., Khanna S.N., Jena P.J. Evolution of bonding in AlnN clusters: A transition from nonmetallic to metallic character. Physical Review B, 1998, 57, 3787-3790.

Feng-Chuan Chuang, Wang C.Z., Ho K.H. Structure of neutral aluminum clusters Aln (2 n 23): Genetic algorithm tight-binding calculations. Phys. Rev. B, 2006 ,73, 125431(7).

Mart nez A., Vela A. Stability of charged aluminum clusters. Physical Review B, 1994, 49, 17464(4).

Karton A., Tarnopolsky A., Martin J.M.L. Atomization energies of the carbon clusters Cn (n 2-10) revisited by means of W4 theory as well as density functional, Gn, and CBS methods. International Journal of Interface between Chemistry and Physics, 2009, 107, 977-1003.

Mahdi Afshar, Mahboobeh Babaei, Amir Hossein Kordbacheh. First principles study on structural and magnetic properties of small and pure carbon clusters (Cn, n 2-12) Journal of Theoretical and Applied Physics, 2014, 8, 103-108.

Beckstedte M., Kley A., Neugebauer J., Scheffler M. Density functional theory calculations for poly-atomic systems: electronic structure, static and elastic properties and ab initio molecular dynamics. Computational Physics Communications, 1997, 107, 187-205.

Spravochnik khimika pod red. B.P. Nikol skogo. -M-L.: KHimiya, 1982, t.1, str. 336-341: http://www.chemway.ru/bd chem/ tbl mol/w tbl r m 08.php.

Hildenbrand D.L. Dissociation energies of the molecules AlO and Al2O. Chemical Physics Letters 1973, 20, 127-129.

Hohenbeg H., Kohn W. Inhomogeneous Electron Gas, Physical Review, 1964, 136, B864-B871.

Hung L., Carter E.A. Accurate Simulations of Metals at the Mesoscale: Explicit Treatment of 1 Million Atoms with Quantum Mechanics. Chemical Physics Letters, 2009, 475, 163-170.

Wang Y.A., Carter E.A. Orbital-free kinetic-energy density functional theory. In: Progress in Theoretical Chemistry and Physics. Kluwer, Dordrecht. 2000, 117 p.

Huajie Chen, Aihui Zhou. Orbital-Free Density Functional Theory for Molecular Structure Calculations. Numerical Mathematics: Theory, Methods and Applications, 2008, 1, 1-28.

Baojing Zhou, Ligneres V.L., Carter E.A. Improving the orbital-free density functional theory description of covalent materials. Journal Chemical Physics, 2005, 122, 044103-044113.

Karasiev V.V., Trickey S.B. Issues and challenges in orbital-free density functional calculations. Computational Physics Communications, 2012, 183, 2519-2527.

Karasiev V.V., Chakraborty D., Shukruto O.A., Trickey S.B. Nonempirical generalized gradient approximation free-energy functional for orbital-free simulations. Physical Review B, 88, 161108-161113(R).

Wesolowski T.A. Approximating the kinetic energy functional Ts : lessons from four-electron systems. Molecular Physics, 2005, 103, 1165-1167.

Junchao Xia, Chen Huang, Ilgyou Shin, Carter E.A. Can orbital-free density functional theory simulate molecules The Journal of Chemical Physics, 2012, 136, 084102(13).

Lehtom ki, J., Makkonen, I., Caro, M.A., Harju, A. and Lopez-Acevedo O. (2014) Orbital-free density functional theory implementation with the projector augmented wave method. Journal Chemical Physics, 141 234102(7).

Zavodinsky V.G., Gorkusha O.A. Quantum-Mechanical Modeling without Wave Functions. Physics of the Solid States, 2014, 56(11), 2329-2335.

Zavodinsky V.G., Gorkusha O.A. New Orbital-Free Approach for Density Functional Modeling of Large Molecules and Nanoparticles. Modeling and Numerical Simulation of Material Science, 2015, 5, 39-46.

Zavodinsky V.G., Gorkusha

Fuchs M., Scheffler M. Ab initio pseudopotentials for electronic structure calculations of poly-atomic systems using density-functional theory, Computational Physics Communications, 1999) ,119, 67-98.

Perdew J.P., Zunger A. Self-interaction correction to density functional approximation for many-electron systems, Physical Review B, 1981, 23, 5048-5079.

Ceperley D.M., Alder B.J. Ground state of the electron gas by a stochastic method, Physical Review Letters, 1980, 45. 566-569.

Raghavachari K., Logovinsky V. Structure and bonding in small silicon clusters. Phys. Rev. Lett. 1985, 55, 2853-2856.

Mukhtarov A.P., Normurodov A.B., Sulaymonov N.T., Umarova F.T. Charge States of Bare Silicon Clusters up to Si8 by Non-Conventional Tight-Binding Method. Journal of nano- and electronic physics, 2015, 7, 01012(7).

Nayak S.K., Khanna S.N., Jena P.J. Evolution of bonding in AlnN clusters: A transition from nonmetallic to metallic character. Physical Review B, 1998, 57, 3787-3790.

Feng-Chuan Chuang, Wang C.Z., Ho K.H. Structure of neutral aluminum clusters Aln (2 n 23): Genetic algorithm tight-binding calculations. Phys. Rev. B, 2006 ,73, 125431(7).

Mart nez A., Vela A. Stability of charged aluminum clusters. Physical Review B, 1994, 49, 17464(4).

Karton A., Tarnopolsky A., Martin J.M.L. Atomization energies of the carbon clusters Cn (n 2-10) revisited by means of W4 theory as well as density functional, Gn, and CBS methods. International Journal of Interface between Chemistry and Physics, 2009, 107, 977-1003.

Mahdi Afshar, Mahboobeh Babaei, Amir Hossein Kordbacheh. First principles study on structural and magnetic properties of small and pure carbon clusters (Cn, n 2-12) Journal of Theoretical and Applied Physics, 2014, 8, 103-108.

Beckstedte M., Kley A., Neugebauer J., Scheffler M. Density functional theory calculations for poly-atomic systems: electronic structure, static and elastic properties and ab initio molecular dynamics. Computational Physics Communications, 1997, 107, 187-205.

Spravochnik khimika pod red. B.P. Nikol skogo. -M-L.: KHimiya, 1982, t.1, str. 336-341: http://www.chemway.ru/bd chem/ tbl mol/w tbl r m 08.php.

Hildenbrand D.L. Dissociation energies of the molecules AlO and Al2O. Chemical Physics Letters 1973, 20, 127-129.

Keywords:

the theory of density functional, butalbitalin approach, atoms of different types, the kinetic energy functional.

## Related Articles

MODELING OF NANOSYSTEMS AND NANOELECTRONICS Pages: 11-16 Issue №3497

ON THE WAY TO MODELING LARGE NANOSYSTEMS AT THE ATOMIC LEVEL

modeling
the density functional
butalbitalin approach
dimers

Show more
1. MATHEMATICAL MODELING, NUMERICAL METHODS AND COMPLEX PROGRAMS Pages: 24-29 Issue №6518

APPLICATION OF ORBITAL-FREE APPROACH TO SIMULATION OF MULTI ATOMIC SYSTEMS WITH VARIOUS DIRECTIONS OF INTERATOMIC BONDS

Modeling
the density functional
butalbitalin approach
the trimers
covalent bonds

Show more
6. CONDENSED MATTER PHYSICS Pages: 107-113 Issue №9675

COMPUTER MODELING OF SHEAR RUPTURE IN TITANIUM AS THE INITIAL STAGE OF THE HOMOGENEOUS SURFACES FRICTION

modeling
the theory of density functional
the method of pseudopotential
shear destruction
Titan

Show more