Management models of data collection processes in IoT networks with the dynamic structure
( Pp. 62-71)

More about authors
Aung Myo Thaw aspirant fakulteta programmnoy inzhenerii i kompyuternoy tehniki
ITMO University Abbas Saddam Ahmed aspirant kafedry vychislitelnoy tehniki
Saint- Petersburg Electrotechnical University (LETI) Zhukova Natalia A. kandidat tehnicheskih nauk, docent; veduschiy nauchnyy sotrudnik
St. Petersburg Institute of Informatics and Automation of the Russian Academy of Sciences Chernokulsky Vladimir V. aspirant
Saint- Petersburg Electrotechnical University (LETI)
For read the full article, please, register or log in
The collection of data from the network with dynamic structure is a complex process that must be performed with considering of security, energy efficiency and latency requirements. To determine the optimal data collection models that meet the stated requirements, the authors analyzed models and methods of data collection in dynamic networks, as well as management processes of data collection. The study allows to determine the most effective technologies for data collection in dynamic networks, which include Fog technologies and clustering technologies. Based on the analysis, the authors have developed the model for data collection managment, which allows to construct and rebuild the structures of data collection models in accordance with the requirements and conditions of data collection. The developed approaches and principles were successfully implemented in practice: a system of data collection was tested for the crane complexes, which is designed to work at production sites. In general, the study allows to identify methods and tools that effectively solve the problems of data collection in the networks with dynamic structure, and to demonstrate the solution of these problems in practice.
How to Cite:
Aung M.T., Abbas S.A., Zhukova N.A., Chernokulsky V.V., (2020), MANAGEMENT MODELS OF DATA COLLECTION PROCESSES IN IOT NETWORKS WITH THE DYNAMIC STRUCTURE. Computational Nanotechnology, 3: 62-71. DOI: 10.33693/2313-223X-2020-7-3-62-71
Reference list:
Suwandhada K., Panyim K. ALEACH-Plus: An Energy Efficient Cluster Head Based Routing Protocol for Wireless Sensor Network. 7th International Electrical Engineering Congress (iEECON) (Hua Hin, Thailand, Mar. 6-8, 2019). IEEE. 2019. Pp. 1-4. DOI: 10.1109/iEECON45304.2019.8938948.
Rady A., Sabor N., Shokair M., El-Rabaie E.-S.M. Mobility based genetic algorithm hierarchical routing protocol in mobile wireless sensor networks. International Japan-Africa Conference on Electronics, Communications and Computations (JAC-ECC) (Alexandria, Egypt, Dec. 17-19, 2018). IEEE. 2018. Pp. 83-86. DOI: 10.1109/JEC-ECC.2018.8679548.
Zhang D., Qiu J.-N., Zhang T., Wu H. New energy-efficient hierarchical clustering approach based on neighbor rotation for edge computing of IoT. 28th International Conference on Computer Communication and Networks (ICCCN) (Valencia, Spain, 29 July - 1 Aug. 2019). IEEE. 2019. Pp. 1-2. DOI: 10.1109/ICCCN.2019.8847073.
Hao F., Kodialam M., Lakshman T.V., Mukherjee S. Online allocation of virtual machines in a distributed cloud. IEEE/ACM Transactions on Networking. 2017. Vol. 25. Iss. 1. Pp. 238-249. DOI: 10.1109/TNET.2016.2575779.
ZHukova N. A., Pan kin A. V. Printsipy organizatsii upravleniya protsessami obrabotki i analiza mnogomernykh izmereniy v IGIS // Materialy 5-y Ros. mul tikonf. po problemam upravleniya Informatsionnye tekhnologii v upravlenii (ITU-2012) (SPb., 9-11 okt. 2012 g.). SPb.: AO Kontsern TSNII Elektropribor , 2012. S. 403-414.
Zhukova N. Dynamic resources management in agile IGIS. Information Fusion and Geographic Information Systems (IF GIS 2015): 7th International Workshop on Information Fusion and Geographic Information Systems: Deep Virtualization for Mobile (Grenoble, France, May 18-20, 2015). V. Popovich, C. Claramunt, M. Schrenk, K. Korolenko, J Gensel (eds.). Springer International Publishing, 2015. Pp. 125-145. (Lecture notes in Geoinformation and Cartography).
Vodyakho A.I., ZHukova N.A., Klimov N.V. i dr. Vychislitel nye modeli kognitivnykh sistem monitoringa // Morskie intellektual nye tekhnologii. 2018. T. 3. № 4 (42). S. 147-153.
Osipov V.U., Vodyaho A.I., Klimov N.V. et al. Computational and technological models of cognitive monitoring systems // Advances in Science, Technology and Engineering Systems Journal. 2019. Vol. 2. Iss. 1. Pp. 197-202.
Vodyaho A., Zhukova N. System of ontologies for data processing applications based on implementation of data mining techniques. Proceedings of the 3rd International Conference on Analysis of Images, Social Networks and Texts, AIST 2014 (Yekaterinburg, Russia, April, 2014). 2014. Vol. 1197. Pp. 102-116.
Korobov D.A., Lapaev M.V., Vodyakho A.I., ZHukova N.A. Modeli predstavleniya dannykh v oblasti meditsiny // Izvestiya SPbGETU LETI . 2016. № 7. S. 7-13.
Vodyakho A.I., Mustafin N.G., ZHukova N.A. Ontologicheskiy podkhod k postroeniyu sistem monitoringa resursov v setyakh kabel nogo televideniya // Izvestiya SPbGETU LETI . 2017. № 2. C. 29-38.
ZHukova N.A. Ontologicheskie modeli transformatsii dannykh o sostoyanii tekhnicheskikh ob ektov // Ontologiya proektirovaniya. 2019. T. 9. № 3 (33). S. 345-360.
data collection process management, dynamic network, internet of things, computing systems, Fog technologies, management models of data collection.