Modeling the hydraulic characteristics of drain valve and burst fitting of an aircraft accident-resistant fuel system
( Pp. 37-44)
More about authors
Napreenko Konstantin S.
inzhener 2-y kategorii
Moscow Aviation Institute (National Research University) Savelev Roman S. veduschiy inzhener
Moscow Aviation Institute (National Research University) Trofimov Aleksey A. inzhener 1-y kategorii
Moscow Aviation Institute (National Research University) Lamtyugina Anna V. inzhener 2-y kategorii
Moscow Aviation Institute (National Research University) Zinina Anna I. tehnik
Moscow Aviation Institute (National Research University)
Moscow Aviation Institute (National Research University) Savelev Roman S. veduschiy inzhener
Moscow Aviation Institute (National Research University) Trofimov Aleksey A. inzhener 1-y kategorii
Moscow Aviation Institute (National Research University) Lamtyugina Anna V. inzhener 2-y kategorii
Moscow Aviation Institute (National Research University) Zinina Anna I. tehnik
Moscow Aviation Institute (National Research University)
Abstract:
The article discusses methods for determining the hydraulic resistance of units of an accident-resistant fuel system. A detailed description of the need to create such fuel systems for modern helicopters is given. The development of such systems today is impossible without the use of the method of mathematical modeling, which allows to qualitatively solve problems arising in the design process. To obtain accurate research results, it is necessary to have a complete description of all elements and assemblies of the system. Methods for determining the hydraulic characteristics of AFS elements using the drag coefficient, reference literature and CFD codes are considered. As the investigated AFS units, a drain valve and burst fitting were studied in the article. A hydraulic calculation of these AFS elements ware performed, the simulation results are presented in the ANSYS CFX software package. Also as the calculation results of bursting fitting, the pressure distribution fields of full and static pressure, velocity and streamlines are also shown. An experimental setup for validating the results obtained using the mathematical modeling method is considered, as well as a methodology for conducting a full-scale experiment to determine the hydraulic resistance of the unit. Materials have been prepared for inclusion in a one-dimensional mathematical model of an accident-resistant fuel system.
How to Cite:
Napreenko K.S., Savelev R.S., Trofimov A.A., Lamtyugina A.V., Zinina A.I., (2020), MODELING THE HYDRAULIC CHARACTERISTICS OF DRAIN VALVE AND BURST FITTING OF AN AIRCRAFT ACCIDENT-RESISTANT FUEL SYSTEM. Computational Nanotechnology, 3 => 37-44.
Reference list:
Makovetskiy M.B., Pugachev YU.N. Osnovnye trebovaniya k avariestoykoy toplivnoy sisteme vertoleta // 14-ya Mezhdunar. konf. Aviatsiya i kosmonavtika - 2015 . 16-20 noyabrya 2015 g. M.: Tezisy. Tip. Lyuksor , 2015. 520 s.
Permyakov S.N., Savel ev E.A. Issledovanie problem sozdaniya avariestoykoy toplivnoy sistemy vertoleta // Izvestiya Samarskogo nauchnogo tsentra Rossiyskoy akademii nauk. 2014. T. 16. № 1 (5).
Makovetskiy M.B., Pugachev YU.N., Smagin D.I., Tkachenko I.O. Obespechenie novogo kachestva aviatekhniki. Proektirovanie, izgotovlenie i ispytaniya myagkikh toplivnykh bakov avariestoykoy toplivnoy sistemy vertoletov // Kachestvo i zhizn . 2018.
Idel chik I. E. Spravochnik po gidravlicheskim soprotivleniyam / pod red. M.O. SHteynberga. 3-e izd., pererab. i dop. M.: Mashinostroenie, 1992. 672 s.: il.
Kireev V.N., Nizamova A., Urmancheev S.F. Gidravlicheskoe soprotivlenie techeniya termovyazkoy zhidkosti v ploskom kanale peremennogo secheniya // Journal of Physics Conference Series. February 2019. 1158(3):032014. DOI: 10.1088/1742-6596/1158/3/032014.
Aver yanov I.O., Zinin A.V., Kuznetsov V.M. i dr. Zadacha proektirovaniya avariestoykoy toplivnoy sistemy vertoleta // Mater. XXII mezhdunar. simpoziuma Dinamicheskie i tekhnologicheskie problemy mekhaniki konstruktsiy i sploshnykh sred im. A.G. Gorshkova. Moskovskiy aviatsionnyy institut (Natsional nyy issledovatel skiy universitet). M.: OOO TRP , 2016.
Titarenko V.B. Raschet staticheskoy kharakteristiki obratnogo klapana v programmnom komplekse FlowVision // Molodoy uchenyy. 2018. № 26 (212). S. 22-28.
Akhmedzyanov D.A., Kishalov A.E. Raschety slozhnykh geometricheskikh modeley uzlov aviatsionnykh GTD v programmnom komplekse ANSYS CFX // Vestnik Ufimskogo gos. aviatsionnogo tekhn. un-ta. 2009.
Abdulin A.YA., Proskurina N.B., Senyushkin N.S., YAmaliev R.R. Otsenka vozmozhnosti ispol zovaniya programmnogo kompleksa ANSYS CFX pri raschete tsentrobezhnykh kompressorov // Vestnik Voronezhskogo gos. tekhn. un-ta. 2011.
Akhmedzyanov D.A., Kishalov A.E., Sukhanov A.V., Markina K.V. Primenenie ANSYS CFX dlya polucheniya kharakteristik osevykh kompressorov GTD // Vestnik Ufimskogo gos. aviatsionnogo tekhn. un-ta. 2012.
Strelets D.YU., Smagin D.I., Starostin K.I. i dr. Povyshenie kachestva rascheta parametrov vozdukha v passazhirskikh zonakh blizhne-srednemagistral nogo samoleta putem vzaimodeystviya odnomernogo (Simintech) i trekhmernogo (Logos) programmnykh kompleksov // Computational nanotechnology. 2018. № 4. S. 35-40.
Unlu D., Cappuzzo F., Broca O., Borrelli P. Minimizing aircraft ECS bleed off-take - virtual integrated aircraft applications. SAE Int. J. Aerosp. 2016. No. 9 (1). DOI:10.4271/2016-01-2054.
Jian F.U., Mare J.-Ch., Liming Y.U., Yongling F.U. Multi-level virtual prototyping of electromechanical actuation system for more electric aircraft. Chinese Journal of Aeronautics. 2018. No. 31 (5). Pp. 892-913. DOI: 10.1016/j.cja.2017.12.009.
Hong-xin Wang, Yao-xing Shang, Jiang-He Jia, Zong-Xia Jiao. Simulation and analysis for users flow requirements of aircraft hydraulic system based on AMESim. Conference: 2016 IEEE/CSAA International Conference on Aircraft Utility Systems (AUS). DOI: 10.1109/AUS.2016.7748165.
Patent № RU 197 570 U1 Drenazhnyy klapan . https://yandex.ru/patents/doc/RU197570U1 20200513
Satin A., Savel ev R., Smagin D. i dr. Prilozhenie SimInTech Software dlya optimizatsii parametrov toplivnoy sistemy perspektivnogo vertoleta // Set konferentsiy MATEC 304, 04016. 2019.
Patent № RU 198 380 U1 Razryvnoy fiting . https://yandex.ru/patents/doc/RU198380U1 20200702
Badernikov A.V., Piralishvili SH.A., Gur yanov A.I. Rezul taty chislennogo modelirovaniya protsessov goreniya v vikhrevoy kamere // Set konferentsiy MATEC 209, 00023. 2018.
YAblokov A., YAnin I., Danilishin A., Zuev A. ANSYS CFX chislennoe issledovanie stupeney tsentrobezhnogo kompressora s malym koeffitsientom raskhoda // Set konferentsiy MATEC 245, 09002. 2018.
Benner P., Gugercin S., Willcox K.E. A survey of projection-based model reduction methods for parametric dynamical systems. SIAM Review. June 2015. No. 57 (4). Pp. 483-531. DOI: 10.1137/130932715.
Molchanov A. CHislennyy metod resheniya uravneniy Nav e-Stoksa. Mart 2019. DOI: 10.31219/osf.io/zf3j2/
Permyakov S.N., Savel ev E.A. Issledovanie problem sozdaniya avariestoykoy toplivnoy sistemy vertoleta // Izvestiya Samarskogo nauchnogo tsentra Rossiyskoy akademii nauk. 2014. T. 16. № 1 (5).
Makovetskiy M.B., Pugachev YU.N., Smagin D.I., Tkachenko I.O. Obespechenie novogo kachestva aviatekhniki. Proektirovanie, izgotovlenie i ispytaniya myagkikh toplivnykh bakov avariestoykoy toplivnoy sistemy vertoletov // Kachestvo i zhizn . 2018.
Idel chik I. E. Spravochnik po gidravlicheskim soprotivleniyam / pod red. M.O. SHteynberga. 3-e izd., pererab. i dop. M.: Mashinostroenie, 1992. 672 s.: il.
Kireev V.N., Nizamova A., Urmancheev S.F. Gidravlicheskoe soprotivlenie techeniya termovyazkoy zhidkosti v ploskom kanale peremennogo secheniya // Journal of Physics Conference Series. February 2019. 1158(3):032014. DOI: 10.1088/1742-6596/1158/3/032014.
Aver yanov I.O., Zinin A.V., Kuznetsov V.M. i dr. Zadacha proektirovaniya avariestoykoy toplivnoy sistemy vertoleta // Mater. XXII mezhdunar. simpoziuma Dinamicheskie i tekhnologicheskie problemy mekhaniki konstruktsiy i sploshnykh sred im. A.G. Gorshkova. Moskovskiy aviatsionnyy institut (Natsional nyy issledovatel skiy universitet). M.: OOO TRP , 2016.
Titarenko V.B. Raschet staticheskoy kharakteristiki obratnogo klapana v programmnom komplekse FlowVision // Molodoy uchenyy. 2018. № 26 (212). S. 22-28.
Akhmedzyanov D.A., Kishalov A.E. Raschety slozhnykh geometricheskikh modeley uzlov aviatsionnykh GTD v programmnom komplekse ANSYS CFX // Vestnik Ufimskogo gos. aviatsionnogo tekhn. un-ta. 2009.
Abdulin A.YA., Proskurina N.B., Senyushkin N.S., YAmaliev R.R. Otsenka vozmozhnosti ispol zovaniya programmnogo kompleksa ANSYS CFX pri raschete tsentrobezhnykh kompressorov // Vestnik Voronezhskogo gos. tekhn. un-ta. 2011.
Akhmedzyanov D.A., Kishalov A.E., Sukhanov A.V., Markina K.V. Primenenie ANSYS CFX dlya polucheniya kharakteristik osevykh kompressorov GTD // Vestnik Ufimskogo gos. aviatsionnogo tekhn. un-ta. 2012.
Strelets D.YU., Smagin D.I., Starostin K.I. i dr. Povyshenie kachestva rascheta parametrov vozdukha v passazhirskikh zonakh blizhne-srednemagistral nogo samoleta putem vzaimodeystviya odnomernogo (Simintech) i trekhmernogo (Logos) programmnykh kompleksov // Computational nanotechnology. 2018. № 4. S. 35-40.
Unlu D., Cappuzzo F., Broca O., Borrelli P. Minimizing aircraft ECS bleed off-take - virtual integrated aircraft applications. SAE Int. J. Aerosp. 2016. No. 9 (1). DOI:10.4271/2016-01-2054.
Jian F.U., Mare J.-Ch., Liming Y.U., Yongling F.U. Multi-level virtual prototyping of electromechanical actuation system for more electric aircraft. Chinese Journal of Aeronautics. 2018. No. 31 (5). Pp. 892-913. DOI: 10.1016/j.cja.2017.12.009.
Hong-xin Wang, Yao-xing Shang, Jiang-He Jia, Zong-Xia Jiao. Simulation and analysis for users flow requirements of aircraft hydraulic system based on AMESim. Conference: 2016 IEEE/CSAA International Conference on Aircraft Utility Systems (AUS). DOI: 10.1109/AUS.2016.7748165.
Patent № RU 197 570 U1 Drenazhnyy klapan . https://yandex.ru/patents/doc/RU197570U1 20200513
Satin A., Savel ev R., Smagin D. i dr. Prilozhenie SimInTech Software dlya optimizatsii parametrov toplivnoy sistemy perspektivnogo vertoleta // Set konferentsiy MATEC 304, 04016. 2019.
Patent № RU 198 380 U1 Razryvnoy fiting . https://yandex.ru/patents/doc/RU198380U1 20200702
Badernikov A.V., Piralishvili SH.A., Gur yanov A.I. Rezul taty chislennogo modelirovaniya protsessov goreniya v vikhrevoy kamere // Set konferentsiy MATEC 209, 00023. 2018.
YAblokov A., YAnin I., Danilishin A., Zuev A. ANSYS CFX chislennoe issledovanie stupeney tsentrobezhnogo kompressora s malym koeffitsientom raskhoda // Set konferentsiy MATEC 245, 09002. 2018.
Benner P., Gugercin S., Willcox K.E. A survey of projection-based model reduction methods for parametric dynamical systems. SIAM Review. June 2015. No. 57 (4). Pp. 483-531. DOI: 10.1137/130932715.
Molchanov A. CHislennyy metod resheniya uravneniy Nav e-Stoksa. Mart 2019. DOI: 10.31219/osf.io/zf3j2/
Keywords:
Mathematical model, drain valve, bursting fitting, accident-proof fuel system, helicopter.
Related Articles
Mathematical Modeling, Numerical Methods and Complex Programs Pages: 48-56 DOI: 10.33693/2313-223X-2024-11-1-48-56 Issue №95355
Mathematical Model of Economic Information
mathematical model
economic information
information field topology
economic utility
Show more
Computer Modeling and Design Automation Pages: 34-41 DOI: 10.33693/2313-223X-2021-8-4-34-41 Issue №20323
Computer Simulation of Oscillatory Processes Created by a Planetary Vibroprive with Kinematically Unbalanced Masses in Machines for Mixing Liquid Mixtures
vibrodrive
oscillatory processes
mathematical model
mixing of liquid media
Show more
Multiscale modeling for information control and processing Pages: 45-51 DOI: 10.33693/2313-223X-2020-7-3-45-51 Issue №17377
The concept of fuel system’s mathematical modeling based on certification requirements
Mathematical model
certification
fuel system
helicopter
Show more
Automation of Manufacturing and Technological Processes Pages: 63-71 DOI: 10.33693/2313-223X-2023-10-4-63-71 Issue №47939
Control System for Waterjet Cutting Process with Swirling Working Fluid Jet
waterjet cutting
fatigue chipping
jet oscillation
abrasive
cutting scratching
Show more
4. MATHEMATICAL AND INSTRUMENTAL METHODS OF ECONOMICS 08.00.13 Pages: 65-72 Issue №19146
FORECASTING FINANCIAL MARKETS USING CONVENTIONAL NEURAL NETWORK
financial market forecasting
machine learning
convolutional neural network
mathematical model
algorithm
Show more