# APPLICATION OF MATHEMATICAL MODELS IN CYCLE CHEMISTRY MONITORING SYSTEMS FOR OPTIMIZATION OF CYCLE CHEMISTRY AT THERMAL POWER PLANTS

( Pp. 71-74)

More about authors

Verkhovsky Andrew Evgenyevich
kand. tehn. nauk, docent

National Research University «Moscow Power Engineering Institute» Aung Thu Moe aspirant

National Research University «Moscow Power Engineering Institute» Sai Aung Htike San aspirant

National Research University «Moscow Power Engineering Institute»

National Research University «Moscow Power Engineering Institute» Aung Thu Moe aspirant

National Research University «Moscow Power Engineering Institute» Sai Aung Htike San aspirant

National Research University «Moscow Power Engineering Institute»

Abstract:

One of the tasks of water chemistry control and monitoring at fossil power plants is prevention of water chemistry failure. This aim may be achieved by prediction of impurities concentration in different parts of the cycle and analysis of corrosion products behavior. To describe those processes it is necessary to understand the corrosion and scaling formation mechanisms. This understanding gives possibility to develop mathematical models that can provide real-time calculations based on regular cycle chemistry measurements. Application of those mathematical models is possible if cycle chemistry monitoring system (CCMS) is applied in thermal power plant. Integration of mathematical models in CCMS can gives opportunity to improve chemistry controlwith calculation of chemical parameters that can not be measured directly, to predict impurities behavior in water steam cycle, and also gives opportunity to analyze scaling and corrosion processes. To improve possibilities of mathematical models is possible by computational mathematics methods application. Artificial neural network (ANN) is the one of those methods. ANN is algorithms that can provide generalization of impute data and apply those results for current measurement data analyzes. This paper gives brief information about mathematical modeling with ANN application for single-phase flow accelerated corrosion (FAC) analyzing. For this propose mathematical model with two group ANN was developed. Those ANNs can identify possible place of single-phase ANN and possibility of it’s appear.

How to Cite:

Verkhovsky A.E., Aung T.M., Sai A.H., (2018), APPLICATION OF MATHEMATICAL MODELS IN CYCLE CHEMISTRY MONITORING SYSTEMS FOR OPTIMIZATION OF CYCLE CHEMISTRY AT THERMAL POWER PLANTS. Computational Nanotechnology, 4 => 71-74.

Reference list:

Instrumentation for monitoring and control of cycle chemistry for the steam-water circuits of fossil-fired and combined-cycle power plants. Technical Guidance Document. International Association for the Properties of Water and Steam, 2009.

Gotovtsev P.M., Voronov V.N. Cycle Chemistry Monitoring Systems // Power Plant Chemistry. 2012. 14 (3). Rp. 158-162.

Otakar Jonas. Effective cycle chemistry control // ESAA Power station chemistry conference. May 15-16, 2000. Australia, Queensland, Rockhampton, 2000.

Gotovtsev P., Kartsev A., Khizova E. Mathematical modeling of Water Chemistry Control Systems at Thermal Power Plants // The 4th IWA ASPIRE Conference and Exhibition. 2-6 October, 2011. Tokyo Japan

Larin B.M., Eremina N.A. Raschet mineralizatsii i kontsentratsii ammiaka i uglekisloty v vodakh tipa kondensata // Teploenergetika. 2000. № 7. S. 10-14

Hassoun M.H. Fundamentals of artificial neural networks. Cambridge, MA: MIT Press, 2005

Kotenkov V.N., Tyapkov V.F. Primenenie neyrosetevogo modelirovaniya dlya nepreryvnogo kontrolya rN, teplonositelya AES // Teploenergetika. MEI. 2005. № 7. S. 36-40

KHaykin S. Neyronnye seti. Polnyy kurs. M.: Izd. dom Vil yams , 2006

Barry Dooley R. Flow-Accelerated Corrosion in Fossil and Combined Cycle / HRSG Plants Power Plant Chemistry. 2008. 10 (2). Rp. 68-89

Petrova T.I., Gotovtsev P.M. Mezhdunar. konf. Erozionno-korrozionnyy iznos na teplovykh elektrostantsiyakh i elektrostantsiyakh s parogazovymi ustanovkami // Energetik. NTF Energoprogress. 2011. № 7

Gotovtsev P.M., Voronov V.N. Cycle Chemistry Monitoring Systems // Power Plant Chemistry. 2012. 14 (3). Rp. 158-162.

Otakar Jonas. Effective cycle chemistry control // ESAA Power station chemistry conference. May 15-16, 2000. Australia, Queensland, Rockhampton, 2000.

Gotovtsev P., Kartsev A., Khizova E. Mathematical modeling of Water Chemistry Control Systems at Thermal Power Plants // The 4th IWA ASPIRE Conference and Exhibition. 2-6 October, 2011. Tokyo Japan

Larin B.M., Eremina N.A. Raschet mineralizatsii i kontsentratsii ammiaka i uglekisloty v vodakh tipa kondensata // Teploenergetika. 2000. № 7. S. 10-14

Hassoun M.H. Fundamentals of artificial neural networks. Cambridge, MA: MIT Press, 2005

Kotenkov V.N., Tyapkov V.F. Primenenie neyrosetevogo modelirovaniya dlya nepreryvnogo kontrolya rN, teplonositelya AES // Teploenergetika. MEI. 2005. № 7. S. 36-40

KHaykin S. Neyronnye seti. Polnyy kurs. M.: Izd. dom Vil yams , 2006

Barry Dooley R. Flow-Accelerated Corrosion in Fossil and Combined Cycle / HRSG Plants Power Plant Chemistry. 2008. 10 (2). Rp. 68-89

Petrova T.I., Gotovtsev P.M. Mezhdunar. konf. Erozionno-korrozionnyy iznos na teplovykh elektrostantsiyakh i elektrostantsiyakh s parogazovymi ustanovkami // Energetik. NTF Energoprogress. 2011. № 7