Development of an algorithm for optimizing energy consumption in chemical-technological systems based on statistical training
( Pp. 68-76)

More about authors
Malysheva Tatyana V. kandidat ekonomicheskih nauk, docent
Kazan National Research Technological University
For read the full article, please, register or log in
The purpose of the research. The aim of the study is to develop approaches to solving the problems of optimizing the energy resources of chemical-technological systems based on statistical training. As the main research methods, the article uses graphical and tabular tools for descriptive data analysis to study the dynamics of the structure of energy carriers and determine possible reserves for reducing consumption; method of training neural networks to predict optimal values of energy consumption. Results. The article analyzes the current trends in the energy intensity of the cost of chemical production with an assessment of the degree of transformation of the structure of the energy portfolio and possible reserves for reducing the specific weight of electrical and thermal energy. The method of training neural articles using a regression predictive model was used to determine the minimum possible values of the parameter of energy resources consumption at the upper limit of the range, taking into account the limitations of the technological regulations for the production of chemicals and chemical products. The results of the study are applicable in the development of software complexes for intelligent energy systems, in the process of determining the cause-and-effect relationships of deviations in resource consumption from a given trajectory and the optimal vector of sustainable energy consumption.
How to Cite:
Reference list:
Aung M.T., Abbas S.A., ZHukova N.A., CHernokul skiy V.V. Modeli upravleniya protsessami sbora dannykh v setyakh interneta veshchey s dinamicheskoy strukturoy // Computational nanotechnology. 2020. № 3. S. 62-71. DOI: 10.33693/2313-223x-2020-7-3-62-71.
Informatsionno-tekhnicheskiy spravochnik po nailuchshim dostupnym tekhnologiyam ITS 18-2116 Proizvodstvo osnovnykh organicheskikh khimicheskikh veshchestv . Byuro NTD, 2016. 337 s.
Lotov A.V., Ryabikov A.I. Prostaya effektivnaya gibridizatsiya klassicheskoy global noy optimizatsii i geneticheskikh algoritmov mnogokriterial noy optimizatsii // ZHurnal vychislitel noy matematiki i matematicheskoy fiziki. 2019. T. 59. № 10. S. 1666-1680.
Malysheva T.V. Ispol zovanie avtomatizirovannykh informatsionnykh sistem v upravlenii ekologicheskoy ustoychivost yu obrabatyvayushchikh proizvodstv // Problemy mashinostroeniya i avtomatizatsii. 2019. № 2. S. 148-153.
Malysheva T.V., SHinkevich A.I. Razrabotka algoritmizirovannoy modeli realizatsii proekta po ekologizatsii promyshlennogo proizvodstva // Izvestiya Samarskogo nauchnogo tsenta Rossiyskoy akademii nauk. 2020. № 4 (69). S. 74-80.
Manusov V.Z., Matrenin P.V., Orlov D.V. Optimizatsiya koeffitsientov transformatsii s primeneniem algoritmov napravlennogo perebora i roevogo intellekta // Problemy regional noy energetiki. 2017. № 1 (33). S. 15-23.
SHinkevich A.I. Otsenka urovnya resursosberezheniya v neftekhimicheskom komplekse // Computational nanotechnology. 2019. № 1. S. 34-38.
SHishkova N.A. Geneticheskiy algoritm kak metod optimizatsii // Problemy nauki. 2017. T. 1. № 5 (18). S. 28-30.
Chih-Ta Y., Ming-Feng Ch. A study of fuzzy control with ant colony algorithm used in mobile robot for shortest path planning and obstacle avoidance // Microsystem Technologies. 2018. № 24 (1). Rp. 125-135.
Gupta N., Khosravy M., Patel N., Dey N. Mendelian Evolutionary Theory Optimization Algorithm // Soft Computing. 2020. № 24 (4). DOI: 10.1007/s00500-020-05239-2.
Gupta N., Singh G., Khosravy M. New crossover operators for Real Coded Genetic Algorithm (RCGA). 2015. Track 2: Artificial Intelligence, Robotics and Human-Computer Interaction. 2015. DOI: 10.1109/ICIIBMS.2015.7439507.
Haiping M., Sengang Y., Dan S., Minrui F. Conceptual and numerical comparisons of swarm intelligence optimization algorithms // Soft Computin. 2017. № 21 (11). Rp. 3081-3100.
Liyi Zh., Chao X., Teng F. Improved ant colony optimization algorithm based on RNA computing // Automatic Control and Computer Sciences. 2017. № 51. Rp. 366-375.
Meshalkin V.P., Bogomolov B.B., Boldyrev V.S., Zubarev A.M. Intelligent logical information algorithm for choosing energy and resource-efficient chemical technologies // Theoretical Foundations of Chemical Engineering. 2019. № 53 (5). Rp. 709-718.
Salman A., Khan A. Fuzzy goal programming-based ant colony optimization algorithm for multi-objective topology design of distributed local area networks // Neural Computing and Applications. Springer. 2017. № 28. Rp. 1-19.
Sidahmed B. Combining boosting machine learning and swarm intelligence for real time object detection and tracking: towards new meta-heuristics boosting classifiers // International Journal of Intelligent Robotics and Applications. 2017. № 1 (4). Rp. 410-428.
Simon D. Evolutionary Optimization Algorithms. Wiley, 2019. 940 r.
optimization algorithm, descriptive analytics, statistical learning, energy resources, specific resource consumption.

Related Articles

Issue №18588
Development of an algorithm for optimizing energy consumption in chemical-technological systems based on statistical training
optimization algorithm descriptive analytics statistical learning energy resources specific resource consumption
Show more
Issue №15984
Energy resources (category differentiation)
objects of right polysemic categories intersectoral transformation energy resources energy
Show more
Issue №11394
legal regulation state and municipal needs centralization of procurement Bank guarantee the enforcement of the contract
Show more
Issue №21610
The Russian Economy under Sanctions Pressure from the Collective West
sanctions pressure collective West inflation financial markets debt obligations
Show more