A Program for Calculating the Projective Range and Straggling of Ions in a Solidusing the Approximation of V.V. Yudin
( Pp. 11-16)

More about authors
Utamuradova Sharifa B. Dr. Sci. (Phys.-Math.), Professor; Director
Institute of Semiconductor Physics and Microelectronics at the National University of Uzbekistan named after Mirzo Ulugbek
Tashkent, Republic of Uzbekistan Muminov Ramizulla A.
Физико-технический институт Научно-производственного объединения «Физика-Солнце» Академии наук Республики Узбекистан
г. Ташкент, Республика Узбекистан Dyskin Valery G. Dr. Sci. (Philos.); senior researcher
Institute of Material Science of the Scientific-Production Association “Physics-Sun” of the Academy of Sciences of the Republic of Uzbekistan
Tashkent, Republic of Uzbekistan Tukfatullin Oskar F. Dr. Sci. (Philos.); Head of laboratory
Institute of Semiconductor Physics and Microelectronics at the National University of Uzbekistan named after Mirzo Ulugbek
Tashkent, Republic of Uzbekistan
Abstract:
Ion implantation is the basis of many technological processes in electronics and microelectronics. The main quantities characterizing the penetration of ions into a solid are as follows; the length of the path of the ion until it stops completely, the average value of the projection of the total path on the direction of motion R̅p, and the average normal deviation of the projection of the path ΔR̅p. To calculate these values, computer programs SRIM, TRIM, and DYNE have been created, which require installation on a personal computer and occupy a large amount of hard disk space, which is not always justified in engineering practice. This paper describes an algorithm for a simple, installation-free program for calculating R̅p and ΔR̅p. The program algorithm is based on the Lindhard-Scharff-Schiott theory.
How to Cite:
Utamuradova S.B., Muminov R.A., Dyskin V.G., Tukfatullin O.F., (2022), A PROGRAM FOR CALCULATING THE PROJECTIVE RANGE AND STRAGGLING OF IONS IN A SOLIDUSING THE APPROXIMATION OF V.V. YUDIN. Computational Nanotechnology, 4 => 11-16.
Reference list:
Townsend P.D., Chandler P.J., Zhang L. Optical effects of ion implantation. Cambridge University Press, 1994. 293 p.
Mayer J.W., Eriksson L., Davies J.A. Ion Implantation of Semiconductors. New York: Academic Press, 1970. 290 p.
Ryssel H., Ruge I. Ion implantation. Chichester: Wiley, 1986. 478 p.
Ivanovsky G.F., Petrov V.I. Ion-plasma processing of materials. Moscow: Radio i Svyaz. 1986. 231 p.
Kozlov V.A., Kozlovski V.V. Doping of semiconductors using radiation defects produced by irradiation with protons and alpha particles. Semiconductors. 2001. Vol. 35. No. 7. Pp. 735-761. (In Rus.)
Stepanov A.L. Optical properties of metal nanoparticles synthesized in a polymer by ion implantation: A review. Technical Physics. 2004. Vol. 49. No. 2. P. 143. (In Rus.)
Stepanov A.L., Trifonov А.А., Osin Y.N. et al. New technology of porous silicon formation by metal ion implantation. Modern High Technologies. 2013. No. 11. Pp. 119-123. (In Rus.)
Interactions of ions with matter. SRIM (The Stopping and Range of Ions in Matter) Software : Download SRIM-2013/Resource author and software developer J.F. Ziegler. Electronic resource . URL: http://www.srim.org/SRIM/SRIMLEGL.htm (data of accesses: 30.03.2022).
Gibbons J.F. Ion implantation in semiconductors. Part I: Range distribution theory and experiments. Proceedings of the IEEE. 1968. Vol. 56. No. 3. Pp. 295-319. (In Rus.)
Lindhard J., Scharff M., Schiott H.E. Range concepts and heavy ion ranges // Matematisk-fysiske Meddelelser udgivet af Det Kongelige Danske Videnskabernes Selskab. 1963. Vol. 33. No. 14. Pp. 1-43. (In English)
Yudin V.V. Analytical calculation of ranges using the approximate energy dependence of nuclear braking. Reports of the Academy of Sciences of the USSR. 1972. Vol. 207. No. 2. Pp. 325-326. (In Rus.)
Examples for calculus analysis. Knowledge base and set of computational algorithms Electronic resource . URL: http://www.wolframalpha.com/examples/mathematics/calculus-and-analysis (data of accesses: 30.03.2022).
Forsythe G.E., Malcolm M.A., Moler C.B. Computer methods for mathematical computations. Englewood Cliffs, 1977. 259 p.
Sheikin E.G. Ranges of low-energy heavy ions in beryllium, boron, carbon and silicon. Technical Physics. 1998. Vol. 68. No. 9. Pp. 33-36. (In Rus.)
Kuzmin V. Range parameters of slow gold ions implanted into light targets // Nuclear Instruments and Methods in Physics Research B. 2009. Vol. 267. No. 16. Pp. 2657-2661.
Keywords:
ion, target, projective range, straggling, elastic energy loss, inelastic energy loss.


Related Articles

Intelligent Technical Systems in Manufacturing and Industrial Practice Pages: 56-62 DOI: 10.33693/2313-223X-2021-8-2-56-62 Issue №19121
Analysis in the Problem of Group Pursuit of Multiple Goals for the Possibility of Simultaneous Achievement
multivariate analysis Radishchev diagrams target pursuer trajectory
Show more