SPECIFICATIONS OF APPROXIMATION k-VALUE FUNCTIONS AND THEIR PROPERTIES
( Pp. 77-84)

More about authors
Zobov Anton I. kandidat tehnicheskih nauk; sotrudnik Fonda
Secure Information Technology Assistance Foundation
Moscow, Russian Federation Nikonov Vladimir G. Dr. Sci. (Eng.), Professor, Member at the Presidium of the Russian Academy of Natural Sciences
Russian Academy of Natural Sciences
Moscow, Russian Federation
For read the full article, please, register or log in
Abstract:
This article discribes different characteristics of proximity specifications k -value function. Most of the authors consider characteristics of proximity specifications in boolean case as Hamming distance only, but we can suggest several different approaches to definitions of this terms. The solution to this problem will allow to expand the number of methods for analysis and building information processing and security data system.
How to Cite:
Zobov A.I., Nikonov V.G., (2019), SPECIFICATIONS OF APPROXIMATION K-VALUE FUNCTIONS AND THEIR PROPERTIES. Computational Nanotechnology, 2 => 77-84. DOI: 10.33693/2313- 223X - 2019- 6- 2- 77- 84
Reference list:
Kudryavtsev V.A. Summirovanie stepeney chisel natural nogo ryada i chisla Bernulli. L.: Ob ed. nauch.-tekhn. izd-vo NKTP SSSR, 1936, 37 s
Logachev O.A., Fedorov S.N., YAshchenko V.V. Bulevy funktsii kak tochki na gipersfere v evklidovom prostranstve // Diskretnaya matematika. 2018. 30:1. S. 39-55.
YAblonskiy S.V. Vvedenie v diskretnuyu matematiku: ucheb. posobie dlya vuzov. 2-e izd., pererab. i dop. M.: Nauka. Gl. red. fiz.-mat. lit. 384 s.
Solodovnikov V.I. Bent-funktsii iz konechnoy abelevoy gruppy v konechnuyu abelevu gruppu // Diskretnaya matematika. 2002. 14:1. S. 99-113.
Ambrosimov A.S. Svoystva bent-funktsiy q-znachnoy logiki nad konechnymi polyami // Diskretnaya matematika. 1994. 6:3. S. 50-60
Nikonov V.G. Metody kompaktnoy realizatsii biektivnykh otobrazheniy, zadannykh regulyarnymi sistemami odnotipnykh bulevykh funktsiy / V.G. Nikonov, A.V. Sarantsev // Vestnik Rossiyskogo Universiteta Druzhby Narodov. Seriya: Prikladnaya i promyshlennaya matematika. 2003. T. 2. № 1. S. 94-105.