ALGORITHMS FOR MANAGING THE LOGICAL STRUCTURE OF THE DATABASE USING A PARAMETRIC MODEL OF COMPETITIVE ACCESS TO QUERIES BASED ON THE RANDOM FOREST METHOD
( Pp. 41-47)

More about authors
Gromey Dmitry Dmitrievich specialist
Federal State Government Educational Institution of Higher Education "The Academy of Federal Security Guard Service of the Russian Federation"
For read the full article, please, register or log in
Abstract:
In article discusses the approach to development of mathematical software for support the process of managing the data schema in relational DBMS in terms of processing of parallel queries stream that compete for data in the hierarchy of the DBMS core memory. The necessity of the formation of a parametric model of queries competitive access. Briefly discusses methods of machine learning, allowing to solve the problem of regression recovery. The use of the random forest method as the most universal method of approximation of arbitrary functions is substantiated. A method of forming a parametric model of competitive access based on the random forest method, as well as an approach with the ensemble of sets of decision trees, which allows to provide the required generalizing ability and stability of the model to partial features and diversity of all types of queries received at the input of the DBMS. The stages of the developed algorithms are presented: ranking query parameters by total execution time and automatic data distribution, allowing you to go from approximating the target system with linear-continuous functions to a set of logical data schema objects, ordered by their effect on time, total query execution time, reducing multi-criteria optimization task to a task optimization by one criterion.
How to Cite:
Gromey D.D., (2019), ALGORITHMS FOR MANAGING THE LOGICAL STRUCTURE OF THE DATABASE USING A PARAMETRIC MODEL OF COMPETITIVE ACCESS TO QUERIES BASED ON THE RANDOM FOREST METHOD. Computational Nanotechnology, 2 => 41-47. DOI: 10.336 9 3/2313- 223X - 2019 - 6 - 2- 41- 4
Reference list:
Lebedenko E.V., Gromey D.D. K voprosu upravleniya skhemoy relyatsionnoy bazy dannykh v zadachakh gorizontal nogo masshtabirovaniya avtonomnykh SUBD // Cb. dokladov 24-y mezhdunar. otkrytoy nauch. konf. Sovremennye problemy informatizatsii . Voronezh: VGTU, 2019.
Vapnik V.N., CHervonenkis A.YA. Teoriya raspoznavaniya obrazov. M.: Nauka, 1974. 416 s.
Zagoruyko N.G. Prikladnye metody analiza dannykh i znaniy. Novosibirsk: IM SO RAN, 1999. 270 s.
Vorontsov K.V. Obzor sovremennykh issledovaniy po probleme kachestva obucheniya algoritmov // Tavricheskiy vestnik informatiki i matematiki. 2004. № 1. S. 5-24.
Jain A.K., Duin R.P.W., Mao J. Statistical pattern recognition: A review // IEEE Transactions on Pattern Analysis and Machine Intelligence. 2000. Vol. 22. № 1. S. 4-37.
Kanevskiy D.Y., Vorontsov K.V. Cooperati e coevoluti y ensemble learning // Multi Classifi Systems: 7th Internati Workshop, Prague, Czech Republic, May 23-25, 2007. Lecture Notes in Computer Science. Springer-Verlag, 2007. S. 469-478.
Tresp V. Committee machines // Handbook for Neural Network Signal Processing / Ed. by Y.H. Hu, J.-N. Hwang. CRC Press, 2001.
Breiman L. Random Forests // Machine Learning. 2001. № 45 (1). S. 5-32.
Tin Kam Ho, Hill M. The Random Subspace Method for Constructing Decision Forests // IEEE Transactions on Pattern Analysis and Machine Intelligence. 1998. Vol. 20. Issue 8. S. 832-844.
Elisseeff A. Stability of randomized learning algorithms / A. Elisseeff, Th. Evgeniou, M. Pontil // Journal of Machine Learning Research. 2005. № 6. S. 55-79.
Breiman L., Friedman J., Stone C.J., Olshen R.A. Classification and Regression Trees // Belmont, California, U.S.A.: Wadsworth Publishing Company, 1984.
Mazurov V., Khachai M., Rybin A. Committee constructions for solving problems of selection, diagnostics and prediction // Proceedings of the Steklov Institute of mathematics. 2002. Vol. 1. P. 67-101.
Vapnik V.N., CHervonenkis A.YA. O ravnomernoy skhodimosti chastot poyavleniya sobytiy k ikh veroyatnostyam // DAN SSSR. 1968. T. 181. № 4. S. 781-784.
Kochedykov D.A. Struktury skhodstva v semeystvakh algoritmov klassifikatsii i otsenki obobshchayushchey sposobnosti // Vseros. konf. Matematicheskie metody raspoznavaniya obrazov. № 14. M.: MAKS Press, 2009. S. 45-48.
Botov P.V. Tochnye otsenki veroyatnosti pereobucheniya dlya monotonnykh i unimodal nykh semeystv algoritmov / P.V. Botov // Vseros. konf. Matematicheskie metody raspoznavaniya obrazov. № 14. M.: MAKS Press, 2009. S. 7-10.