DETERMINATION OF THE DENSITY VALUE SPECIFICALLY AT THE FOCAL POINT OF THE MIRROR CONCENTRATING SYSTEM
( Pp. 49-55)
More about authors
Sobirov Yuldash Begzhanovich
kandidat tehnicheskih nauk; starshiy nauchnyy sotrudnik
Institute of Materials Science «Physics-Sun» of Uzbekistan Academy of Sciences, Uzbekistan Rakhimov Rustam Kh. Dr. Sci. (Eng.); Head, Laboratory No. 1; Institute of Materials Science of the Academy of Sciences of the Republic of Uzbekistan; Institute of Renewable Energy Sources; Tashkent, Republic of Uzbekistan
Институт материаловедения Академии наук Республики Узбекистан
г. Ташкент, Республика Узбекистан Abdurakhmanov Shakhriyor Abdujabbarovich mladshiy nauchnyy sotrudnik
Institute of Materials Science «Physics-Sun» of Uzbekistan Academy of Sciences, Uzbekistan
Institute of Materials Science «Physics-Sun» of Uzbekistan Academy of Sciences, Uzbekistan Rakhimov Rustam Kh. Dr. Sci. (Eng.); Head, Laboratory No. 1; Institute of Materials Science of the Academy of Sciences of the Republic of Uzbekistan; Institute of Renewable Energy Sources; Tashkent, Republic of Uzbekistan
Институт материаловедения Академии наук Республики Узбекистан
г. Ташкент, Республика Узбекистан Abdurakhmanov Shakhriyor Abdujabbarovich mladshiy nauchnyy sotrudnik
Institute of Materials Science «Physics-Sun» of Uzbekistan Academy of Sciences, Uzbekistan
Abstract:
When designing mirror concentrating systems, it is necessary to determine in advance the optical-geometric and optical-energy characteristics of the installation. One is required to choose the mirrors with a reflection coefficient to satisfy the expected energy distribution in the focal area and to pay attention to the accuracy of the reflective surfaces of the mirrors, to the accuracy of the tracking system of the heliostats to the trajectory of the apparent motion of the Sun, to the partial shading to the reflective surfaces, etc. Based on these data, it is necessary to calculate the irradiance distribution in the focal zone of the installation. During installation and utilization of the equipment it is necessary to measure and monitor these parameters and, if necessary, to recalculate the energy distribution taking into account the new parameters.The methods for calculating the density distribution of the radiant flux in the focal zone of mirror-concentrating systems have been developed in parallel with the requirements of exploitation. They do not always correctly reflect the true picture formed in the focus of the heliostat. In this paper, the analysis presents the existing methods for calculating paraboloid concentrators based on the Gaussian distribution of energy in the focal plane. Developing the method of fallen and reflected elementary cone beam and on the basis of generated scattered optical images of the Sun and of the visible angular size (2γо = 32 angle of minutes) of the Sun, which shows non-Gaussian nature of the resulting distribution in the focal plane due to the influence of aberration of the optical paraboloidal surface depending on the change of the aperture angle 2U, we obtained an analytical calculation formula to determine the value of the concentrated radiant flux specifically at the focal point of a paraboloid mirror concentrating system.
How to Cite:
Sobirov Y.B., Rakhimov R.K., Abdurakhmanov S.A., (2019), DETERMINATION OF THE DENSITY VALUE SPECIFICALLY AT THE FOCAL POINT OF THE MIRROR CONCENTRATING SYSTEM. Computational Nanotechnology, 4 => 49-55.
Reference list:
Zakhidov R.A., Umarov G.YA., Vayner A.A. Teoriya i raschet geliotekhnicheskikh kontsentriruyushchikh sistem. Tashkent: FAN, 1977. Zakhidov R.A. Umarov G.Ya. Weiner A.A. Theory and calculation of solar thermal concentrating systems. Tashkent: FAN, 1977.
Solnechnye pechi / Pod red. V.A. Bauma. M.: Inostrannaya literatura, 1960. Solar furnaces / Ed. V.A. Baum. M.: Foreign Literature, 1960
Grilikhes V.A., Matveev V.M., Poluektov V.P. Solnechnye vysokotemperaturnye istochniki tepla dlya kosmicheskikh apparatov. M.: Mashinostroenie, 1975. S. 90-97. Griliches V.A., Matveev V.M., Poluektov V.P. Solar high-temperature heat sources for spacecraft. M.: Engineering, 1975. R 90-97.
Mamatkasimov M.A. Optimizatsiya zerkal no-kontsentriruyushchikh sistem bol shoy solnechnoy pechi i drugikh energeticheskikh ustanovok dlya povysheniya ikh effektivnosti: Dis. ... d-ra tekhn. nauk. Tashkent, 2017. S. 198. Mamatkasimov M.A. Optimization of mirror-concentrating systems of a big solar furnace and other power plants to increase their efficiency: Diss. Doc. Sciences. Tashkent, 2017. C. 198.
Klychev Sh.I., Bakhramov S.A., Zakhidov R.A., Akbarov R.Y., Klycheva M.S. Solar energy concentrators - Errors of numerical calculation of the irradiance integral for solar paraboloid concentrators. Applied Solar Energy. 2005. No. 41 (2). P. 55-58.
Aparisi R.R. Avtoref. dis. ... kand. tekhn. nauk. M.: ENIN, 1955. Aparisi R.R. Abstract. Cand. Diss. Sciences. M.: ENIN, 1955.
SHmal ts G. Kachestvo poverkhnosti. M.-L.: Mashgiz, 1941. Schmalz G. Surface quality. M.-L.: Mashgiz, 1941.
ZHoze P. Raspredelenie plotnosti potoka energii v fokal nom izobrazhenii solnechnoy pechi / V sb. Solnechnye vysokotemperaturnye pechi . M.: IL, 1960. S. 229-238. Jose P. Distribution of energy flux density in the focal image of a solar furnace: In Sat Solar high-temperature furnaces . M.: IL, 1960. R. 229-238.
Abdurakhmanov A.A., Klychev SH.I. i dr. Raspredelenie obluchennosti vdol osi paraboloidnykh kontsentratorov // Geliotekhnika. 2009. № 4. S. 95-97. Abdurakhmanov A.A., Klychev Sh.I. et al. Distribution of irradiation along the axis of paraboloid concentrators. Geliotekhnika. 2009. No. 4. R. 95-97.
Kudrin O.I. Solnechnye vysokotemperaturnye kosmicheskie energodvigatel nye ustanovki. M.: Mashinostroenie, 1987. 248 s. Kudrin O.I. Solar high-temperature space propulsion systems. M.: Mechanical Engineering, 1987. 248 r.
Abdurakhmanov A.A. i dr. Optimizatsiya optiko-geometricheskikh kharakteristik zerkal no-kontsentriruyushchikh sistem // Gelio-tekhnika. 2014. № 4. S. 44-51. Abdurakhmanov A.A. et al. Optimization of the optical-geometric characteristics of mirror-concentrating systems. Geliotekhnika. 2014. No. 4. R. 44-51.
Abdurakhmanov A.A. i dr. Metodika rascheta optiko-energeticheskikh kharakteristik zerkal nykh kontsentriruyushchikh sistem tekhnologicheskogo i energeticheskogo naznacheniya // Geliotekhnika. 2015. № 4. S. 74-77. Abdurakhmanov A.A. et al. Methodology for calculating the optical-energy characteristics of mirror concentrating systems for technological and energy purposes. Heliotekhnika. 2015. No. 4. R. 74-77.
Ispol zovanie solnechnoy energii pri kosmicheskikh issledovaniyakh: sb. statey / pod red. V.A. Bauma. M.: Mir, 1964, 415 s. The use of solar energy in space research: Sat. articles / Ed. V.A. Baum. M.: Mir, 1964, 415 p.
Trombe F., Le Phat Vinh A. Thousand kW Solar Furnace, built by the National Centre of Scientific Research in Odeillo (France). Solar Energy. 1973. Vol. 15. R. 57-61.
Abdurakhmanov A.A., Rakhimov P.X., Mamatkosimov M.A., Kuchkarov A.A. Metodika rascheta geometricheskikh i energeticheskikh parametrov fokal nogo pyatna ot otdel nykh zon kontsentratora so slozhnoy konfiguratsiey midelya // Computational nanotechnology. 2019. № 1. S. 69-74. Abdurakhmanov A.A., Rakhimov R.Kh., Mamatkosimov M.A., Kuchkarov A.A. Methodology for calculating the geometric and energy parameters of the focal spot from individual zones of a concentrator with a complex midsection. Computational nanotechnology. 2019. No. 1. R. 69-74.
Solnechnye pechi / Pod red. V.A. Bauma. M.: Inostrannaya literatura, 1960. Solar furnaces / Ed. V.A. Baum. M.: Foreign Literature, 1960
Grilikhes V.A., Matveev V.M., Poluektov V.P. Solnechnye vysokotemperaturnye istochniki tepla dlya kosmicheskikh apparatov. M.: Mashinostroenie, 1975. S. 90-97. Griliches V.A., Matveev V.M., Poluektov V.P. Solar high-temperature heat sources for spacecraft. M.: Engineering, 1975. R 90-97.
Mamatkasimov M.A. Optimizatsiya zerkal no-kontsentriruyushchikh sistem bol shoy solnechnoy pechi i drugikh energeticheskikh ustanovok dlya povysheniya ikh effektivnosti: Dis. ... d-ra tekhn. nauk. Tashkent, 2017. S. 198. Mamatkasimov M.A. Optimization of mirror-concentrating systems of a big solar furnace and other power plants to increase their efficiency: Diss. Doc. Sciences. Tashkent, 2017. C. 198.
Klychev Sh.I., Bakhramov S.A., Zakhidov R.A., Akbarov R.Y., Klycheva M.S. Solar energy concentrators - Errors of numerical calculation of the irradiance integral for solar paraboloid concentrators. Applied Solar Energy. 2005. No. 41 (2). P. 55-58.
Aparisi R.R. Avtoref. dis. ... kand. tekhn. nauk. M.: ENIN, 1955. Aparisi R.R. Abstract. Cand. Diss. Sciences. M.: ENIN, 1955.
SHmal ts G. Kachestvo poverkhnosti. M.-L.: Mashgiz, 1941. Schmalz G. Surface quality. M.-L.: Mashgiz, 1941.
ZHoze P. Raspredelenie plotnosti potoka energii v fokal nom izobrazhenii solnechnoy pechi / V sb. Solnechnye vysokotemperaturnye pechi . M.: IL, 1960. S. 229-238. Jose P. Distribution of energy flux density in the focal image of a solar furnace: In Sat Solar high-temperature furnaces . M.: IL, 1960. R. 229-238.
Abdurakhmanov A.A., Klychev SH.I. i dr. Raspredelenie obluchennosti vdol osi paraboloidnykh kontsentratorov // Geliotekhnika. 2009. № 4. S. 95-97. Abdurakhmanov A.A., Klychev Sh.I. et al. Distribution of irradiation along the axis of paraboloid concentrators. Geliotekhnika. 2009. No. 4. R. 95-97.
Kudrin O.I. Solnechnye vysokotemperaturnye kosmicheskie energodvigatel nye ustanovki. M.: Mashinostroenie, 1987. 248 s. Kudrin O.I. Solar high-temperature space propulsion systems. M.: Mechanical Engineering, 1987. 248 r.
Abdurakhmanov A.A. i dr. Optimizatsiya optiko-geometricheskikh kharakteristik zerkal no-kontsentriruyushchikh sistem // Gelio-tekhnika. 2014. № 4. S. 44-51. Abdurakhmanov A.A. et al. Optimization of the optical-geometric characteristics of mirror-concentrating systems. Geliotekhnika. 2014. No. 4. R. 44-51.
Abdurakhmanov A.A. i dr. Metodika rascheta optiko-energeticheskikh kharakteristik zerkal nykh kontsentriruyushchikh sistem tekhnologicheskogo i energeticheskogo naznacheniya // Geliotekhnika. 2015. № 4. S. 74-77. Abdurakhmanov A.A. et al. Methodology for calculating the optical-energy characteristics of mirror concentrating systems for technological and energy purposes. Heliotekhnika. 2015. No. 4. R. 74-77.
Ispol zovanie solnechnoy energii pri kosmicheskikh issledovaniyakh: sb. statey / pod red. V.A. Bauma. M.: Mir, 1964, 415 s. The use of solar energy in space research: Sat. articles / Ed. V.A. Baum. M.: Mir, 1964, 415 p.
Trombe F., Le Phat Vinh A. Thousand kW Solar Furnace, built by the National Centre of Scientific Research in Odeillo (France). Solar Energy. 1973. Vol. 15. R. 57-61.
Abdurakhmanov A.A., Rakhimov P.X., Mamatkosimov M.A., Kuchkarov A.A. Metodika rascheta geometricheskikh i energeticheskikh parametrov fokal nogo pyatna ot otdel nykh zon kontsentratora so slozhnoy konfiguratsiey midelya // Computational nanotechnology. 2019. № 1. S. 69-74. Abdurakhmanov A.A., Rakhimov R.Kh., Mamatkosimov M.A., Kuchkarov A.A. Methodology for calculating the geometric and energy parameters of the focal spot from individual zones of a concentrator with a complex midsection. Computational nanotechnology. 2019. No. 1. R. 69-74.
Keywords:
Big Solar Furnace, mirror-concentrating system, heliostatic field, concentrator, facet, aperture angle, paraboloid, focal plane, solar flux density, measure of accuracy.