( Pp. 26-29)

More about authors
Zavodinsky Victor G. Doctor of Physics and Mathematics, Professor; leader-researcher at the Khabarovsk Department of the Institute of Applied Mathematicks of the Russian Academy of Sciences. Khabarovsk, Russian Federation. E-mail: vzavod@mail.ru
Institute of Applied Mathematics of the Russian Academy of Sciences
Khabarovsk, Russian Federation Gorkusha Olga A. Candidate of Physics and Mathematics; senior researcher at the Khabarovsk Department of Institute of Applied Mathematics
Simulation of amorphous metals (Al and Ti) and their contact are carried out by methods of the density functional theory. It is shown that amorphous metals can demonstrate approximately the same cohesive energy that crystalline metals. Densities of electronic states were calculated and compared for amorphous and crystalline metal states. Values of adhesion energy for contacts “crystal - crystal”, “crystal - amorphous system”, and “amorphous system - amorphous system” were compared.
How to Cite:
Zavodinsky V.G., Gorkusha O.A., (2019), ENERGETICS AND ELECTRONIC STRUCTURE OF AMORPHOUS METALS AND COATINGS. Computational Nanotechnology, 1 => 26-29.
Reference list:
Weaire D. The structure of amorphous solids // Contemporary Physics. 1976. 17:2. R. 173-191.
Glezer A.M. Amorfnye i nanokristallicheskie struktury: skhodstva, razlichiya, vzaimnye perekhody // Ros. khim. zh-l (ZH-l Ros. khim. ob-va im. D.I. Mendeleeva). 2002. T. XLVI. № 5. R. 57-63,
Gleiter H. The way from today s materials to new kinds of amorphous solids: nano-glasses // Proc. Indian Nath. Sci. Acad. 2014. 80 (1). R. 55-75.
Chen H.S. Metallic glasses // Chinese J. Phys. 1990. 28 (5). R. 407-425.
Wang Y., Fang Y.Z., Kikegawa T. et al. Amorphouslike diffraction pattern in solid metallic titanium // Physical Review Letters. 2005. 95 (15) 155501; DOI: 10.1103/PhysRevLett.95.155501.
Krasnov V.YU., Poletaev G.M., Starostenkov M.D. Issledovanie struktury amorfnogo nikelya // Fundam. problemy sovremen. materialoved. 2006. 4. R. 37-45.
Ohnuma M., Abe T., Onodera H. Crystallization of sputter deposited Ti-Al amorphous alloy // Mat. Res. Soc. SymP. Proc. 1996. 400. R. 209-214.
Mencer D.E., Naugle D.G., Cocke D.L., Callaway T.O. Structure and thermal stability of amorphous co-deposited Ti-Al alloys // Appl. Phys. Communic. 1992. 11. R. 7-18.
Stachurski Z.H. On structure and properties of amorphous materials // Materials. 2011. 4. R. 1564-1598; DOI:10.3390/ma4091564.
Chu J.J., Steeves C.A. Thermal expansion and recrystallization of amorphous Al and Ti: A molecular dynamics study // J. Non-Crys-talline Solids. 2011. 357. R. 3765-3773.
Xingxing Yue, Akihisa Inoue, Chain-Tsuan Liu, Cang Fan. The development of structure model in metallic glasses // Mater. Res. 2017. 20 (2). R. 326-338.
Cargill G.S. Dense random packing of hard spheres as a structural model for noncrystalline metallic solids // J. Appl. Phys. 1970. 41 (5). R. 2248-2250.
Nicholson D.M.C., Stocks G.M., Shelton W.A. et al. Ab initio studies of the electronic structure and energetics of bulk amorphous metals //Metallurgical and Materials Transactions. 1998. 29A. R. 1845-1851.
Vishnu Karthik Guda, Cherukara Mathew, Kim Hojin, Strachan Alejandro. Amorphous Ni/Al nanoscale laminates as high-energy intermolecular reactive composites // Phys. Rev. B. 2012. 201285. 184206 (1-7); DOI: 10.1103/PhysRevB.85.184206.
Beckstedte M., Kley A., Neugebauer J., Scheffler M. Density functional theory calculations for polyatomic systems: electronic structure, static and elastic properties and ab initio molecular dynamic // Comput. Phys. Commun. 1997. 107. R. 187-205.
Fuchs M., Scheffler M. Ab initio pseudopotentials for electronic structure calculations of poly-atomic systems using density function-al theory // Comput. Phys. Commun. 1999. 119. R. 67-165.
Perdew J.P., Wang Y. Accurate and simple density functional for the electronic exchange energy // Phys. Rev. B. 1986. 33. R. 8800-8802
Kittel C. Introduction to Solid State Physics. 8th edition. Hoboken, NJ: John Wiley Sons, Inc, 2005.