( Pp. 80-85)

More about authors
Zavodinsky Victor G. doktor fizikomatematicheskih nauk, professor; veduschiy nauchnyy sotrudnik
Institute of Applied Mathematics of the Russian Academy of Sciences
Khabarovsk, Russian Federation Gorkusha Olga A. kandidat fizikomatematicheskih nauk; starshiy nauchnyy sotrudnik
Institute of Applied Mathematics of the Russian Academy of Sciences
Khabarovsk, Russian Federation
For read the full article, please, register or log in
We studied an opportunity to develop a full-potential orbital-free method for modeling of multi-atomic systems using results of Kohn-Sham calculations for single atoms. We have obtained equilibrium bond lengths and binding energies for dimers Li2, Be2, B2, C2, N2, O2, F2, Na2, Mg2, Al2, Si2, P2, S2 & Cl2, as well as for C3, C24 and C60 systems in good accordance to other theoretical and experimental data.
How to Cite:
Zavodinsky V.G., Gorkusha O.A., (2019), FULL-ELECTRON ORBITAL-FREE MODELING METHOD FOR ATOMIC SYSTEMS: THE FIRST STEP. Computational Nanotechnology, 3: 80-85. DOI: 10.33693/2313-223X-2019-6-3-80-85
Reference list:
Hohenberg H., Kohn W. Inhomogeneous Electron Gas // Physical Review. 1964. № 136. R. B864-B871.
Perdew J.P., Zunger A.S. Self-interaction correction to density functional approximation for many-electron systems // Physical Review. 1981. № 23. R. 5048-5079.
Ceperley D.M., Alder B.J. Ground state of the electron gas by a stochastic method // Physical Review. 1980. № 45. R. 566-569.
Perdew J.P., Wang Y. Accurate snd simple density functional for the electronic exchange energy // Physical Review. 1986. № 33. R. 8800-8802.
Thomas L.H. The calculation of atomic field // Proc. Cambr. Phil. Soc. 1927. № 23. R. 542-548.
Fermi E. Un metodo statistic per la determinazione di alcune priorieta dell atomo // Rend. Accad. Lincei. 1927. № 6. R. 602-607.
Weizsacker C.F. Theorie de Kernmassen // Z. Physik. 1935. № 96. R. 431-458.
Kohn W., Sham J.L. Self-consistent equations including exchange and correlation effects // Phys. Rev. 1965. № 140. R. A1133-A1138.
Garc -Gon lez P., Alvarellos J.E., Cha n E. Nonlocal symmetrized kinetic-energy density functional: Application to simple surfaces // Phys. Rev. 1998. № 57. R. 4857-4862.
Gomez S., Gonzalez L.E., Gonzalez D.J., Stott M.J., Dalgic S., Silbert M.J. Orbital free ab initio molecular dynamic study of expanded liquid Cs // Non-Cryst. Solids. 1999. № 250-252. R. 163-167.
Wang Y.A., Carter E.A. Orbital-free kinetic-energy density functional theory // In: Theoretical Methods in Condensed Phase Chemistry / ed. S.D. Schwartz. Springer, Dordrecht.: 2002. R. 117-184.
Huajie Chen, Aihui Zhou. Orbital-free density functional theory for molecular structure calculations // Numerical Mathematics: Theory, Methods and Applications. 2008. № 1. R. 1-28.
Hung L., Carter E.A. Accurate Simulations of Metals at the Mesoscale: Explicit Treatment of 1 Million Atoms with Quantum Mechanics // Chemical Physics Letters. 2009. № 475. R. 163-170.
Karasiev V.V., Chakraborty D., Trickey S.B. Progress on new approaches to old ideas: Orbital-free density functionals // In: Many-Electron Approaches in Physics, Chemistry and Mathematics. Mathematical Physics Studies / Eds: V. Bach, S.L. Delle. Springer, Dordrecht.: 2014. R. 113-135.
Sarry A.M., Sarry M.F. To the density functional theory // Physics of Solid State. 2012. № 54 (6). R. 1315-1322.
Bobrov V.B., Trigger S.A. The problem of the universal density functional and the density matrix functional theory // Journal of Experimental and Theoretical Physics. 2013. № 116 (4). R. 635-640.
Zavodinsky V.G., Gorkusha O.A. A new Orbital-Free Approach for Density Functional Modeling of Large Molecules and Nanoparticles // Modeling and Numerical Simulation of Material Science. 2015. № 5. R. 39-47.
Zavodinsky V.G., Gorkusha O.A. Development of an orbital free approach for simulation of multiatomic nanosystems with covalent bonds // Nanosystems: Physics, Chemistry, Mathematics. 2016. № 7 (3). R. 427-432.
Zavodinsky V.G., Gorkusha O.A. Development of the orbital free approach for heteroatomic systems // Nanosystems: Physics, Chemistry, Mathematics. 2016. № 7 (6). R. 1010-1016.
Zavodinsky V.G., Gorkusha O.A. New Orbital Free Simulation Method Based on the Density Functional Theory // Applied and Computational Mathematics. 2017.№ 6 (4). R. 189-195.
Zavodinsky V.G., Gorkusha O.A. Orbital-free modeling method for materials contained atoms with d-electrons // International Journal of Scientific Research in Computer Science, Engineering and Information Technology. 2018. № 3 (7). R. 57-62.
Fuchs M., Scheffler M. Ab initio pseudopotentials for electronic structure calculations of poly-atomic systems using density-functional theory // Computational Physics Communications. 1999. № 119. R. 67-98.
URL: http://elk.sourceforge.net.
Huber K.R., Herzberg G. Molecular Spectra and Molecular Structure. IV. Constants of Diatomic Molecules. Litton Educational Publishing, N.Y.: 1979. 732 p.
Beckstedte M., Kley A., Neugebauer J., Scheffler M. Density functional theory calculation for poly-atomic systems: electronic structure, static and elastic properties and ab initio molecular dynamics // Computational Physics Communications. 1997. № 107. R. 187-205.