( Pp. 80-85)

More about authors
Zavodinsky Victor G. Dr. Sci. (Phys.-Math.), Professor; leader-researcher
Khabarovsk branch at Institute of Applied Mathematics of the Far Eastern branch of the Russian Academy of Sciences
Khabarovsk, Russian Federation Gorkusha Olga A. Cand. Sci. (Phys.-Math.); senior researcher; Khabarovsk branch at Institute of Applied Mathematics of the Far Eastern branch of the Russian Academy of Sciences; Khabarovsk, Russian Federation
Military Academy of Communications named after Marshal of the Soviet Union S.M. Budyonny
St. Petersburg, Russian Federation
We studied an opportunity to develop a full-potential orbital-free method for modeling of multi-atomic systems using results of Kohn-Sham calculations for single atoms. We have obtained equilibrium bond lengths and binding energies for dimers Li2, Be2, B2, C2, N2, O2, F2, Na2, Mg2, Al2, Si2, P2, S2 & Cl2, as well as for C3, C24 and C60 systems in good accordance to other theoretical and experimental data.
How to Cite:
Zavodinsky V.G., Gorkusha O.A., (2019), FULL-ELECTRON ORBITAL-FREE MODELING METHOD FOR ATOMIC SYSTEMS: THE FIRST STEP. Computational Nanotechnology, 3 => 80-85.
Reference list:
Hohenberg H., Kohn W. Inhomogeneous Electron Gas // Physical Review. 1964. № 136. R. B864-B871.
Perdew J.P., Zunger A.S. Self-interaction correction to density functional approximation for many-electron systems // Physical Review. 1981. № 23. R. 5048-5079.
Ceperley D.M., Alder B.J. Ground state of the electron gas by a stochastic method // Physical Review. 1980. № 45. R. 566-569.
Perdew J.P., Wang Y. Accurate snd simple density functional for the electronic exchange energy // Physical Review. 1986. № 33. R. 8800-8802.
Thomas L.H. The calculation of atomic field // Proc. Cambr. Phil. Soc. 1927. № 23. R. 542-548.
Fermi E. Un metodo statistic per la determinazione di alcune priorieta dell atomo // Rend. Accad. Lincei. 1927. № 6. R. 602-607.
Weizsacker C.F. Theorie de Kernmassen // Z. Physik. 1935. № 96. R. 431-458.
Kohn W., Sham J.L. Self-consistent equations including exchange and correlation effects // Phys. Rev. 1965. № 140. R. A1133-A1138.
Garc -Gon lez P., Alvarellos J.E., Cha n E. Nonlocal symmetrized kinetic-energy density functional: Application to simple surfaces // Phys. Rev. 1998. № 57. R. 4857-4862.
Gomez S., Gonzalez L.E., Gonzalez D.J., Stott M.J., Dalgic S., Silbert M.J. Orbital free ab initio molecular dynamic study of expanded liquid Cs // Non-Cryst. Solids. 1999. № 250-252. R. 163-167.
Wang Y.A., Carter E.A. Orbital-free kinetic-energy density functional theory // In: Theoretical Methods in Condensed Phase Chemistry / ed. S.D. Schwartz. Springer, Dordrecht.: 2002. R. 117-184.
Huajie Chen, Aihui Zhou. Orbital-free density functional theory for molecular structure calculations // Numerical Mathematics: Theory, Methods and Applications. 2008. № 1. R. 1-28.
Hung L., Carter E.A. Accurate Simulations of Metals at the Mesoscale: Explicit Treatment of 1 Million Atoms with Quantum Mechanics // Chemical Physics Letters. 2009. № 475. R. 163-170.
Karasiev V.V., Chakraborty D., Trickey S.B. Progress on new approaches to old ideas: Orbital-free density functionals // In: Many-Electron Approaches in Physics, Chemistry and Mathematics. Mathematical Physics Studies / Eds: V. Bach, S.L. Delle. Springer, Dordrecht.: 2014. R. 113-135.
Sarry A.M., Sarry M.F. To the density functional theory // Physics of Solid State. 2012. № 54 (6). R. 1315-1322.
Bobrov V.B., Trigger S.A. The problem of the universal density functional and the density matrix functional theory // Journal of Experimental and Theoretical Physics. 2013. № 116 (4). R. 635-640.
Zavodinsky V.G., Gorkusha O.A. A new Orbital-Free Approach for Density Functional Modeling of Large Molecules and Nanoparticles // Modeling and Numerical Simulation of Material Science. 2015. № 5. R. 39-47.
Zavodinsky V.G., Gorkusha O.A. Development of an orbital free approach for simulation of multiatomic nanosystems with covalent bonds // Nanosystems: Physics, Chemistry, Mathematics. 2016. № 7 (3). R. 427-432.
Zavodinsky V.G., Gorkusha O.A. Development of the orbital free approach for heteroatomic systems // Nanosystems: Physics, Chemistry, Mathematics. 2016. № 7 (6). R. 1010-1016.
Zavodinsky V.G., Gorkusha O.A. New Orbital Free Simulation Method Based on the Density Functional Theory // Applied and Computational Mathematics. 2017.№ 6 (4). R. 189-195.
Zavodinsky V.G., Gorkusha O.A. Orbital-free modeling method for materials contained atoms with d-electrons // International Journal of Scientific Research in Computer Science, Engineering and Information Technology. 2018. № 3 (7). R. 57-62.
Fuchs M., Scheffler M. Ab initio pseudopotentials for electronic structure calculations of poly-atomic systems using density-functional theory // Computational Physics Communications. 1999. № 119. R. 67-98.
URL: http://elk.sourceforge.net.
Huber K.R., Herzberg G. Molecular Spectra and Molecular Structure. IV. Constants of Diatomic Molecules. Litton Educational Publishing, N.Y.: 1979. 732 p.
Beckstedte M., Kley A., Neugebauer J., Scheffler M. Density functional theory calculation for poly-atomic systems: electronic structure, static and elastic properties and ab initio molecular dynamics // Computational Physics Communications. 1997. № 107. R. 187-205.