THE RAY METHOD FOR SOLVING THE DYNAMICS OF THE ELASTIC-VISCOUS-PLASTIC SHELLS
( Pp. 24-28)

More about authors
Egorov Mikhail Valeryevich aspirant kafedry mehaniki i kompyuternogo modelirovaniya fakulteta prikladnoy matematiki, informatiki i mehaniki, inzhener-raschetchik
Voronezh State University; “DATADVANCE”
For read the full article, please, register or log in
Abstract:
The processes of dynamic deformation of shells are actively studied by both domestic and foreign scientists [4; 11; 13; 14]. The work describes the ray method for solving systems of partial differential equations of hyperbolic type. This method consists in constructing the equations of discontinuity transfer along the propagation of perturbations on moving surfaces, as well as in representing the solution in the form of a Taylor power series in the variable distance behind the perturbation front while preserving a sufficient number of terms. The implementation of the method is shown by the example of a system of partial differential equations of hyperbolic type, which describe the process of dynamic deformation of thin cylindrical shells of revolution from elastoviscoplastic materials [10]. An algorithm for constructing a solution up to the required order is given.
How to Cite:
Egorov M.V., (2019), THE RAY METHOD FOR SOLVING THE DYNAMICS OF THE ELASTIC-VISCOUS-PLASTIC SHELLS. Computational Nanotechnology, 4: 24-28. DOI: 10.33693/2313-223X-2019-6-4-24-28
Reference list:
Bakhvalov N.S. CHislennye metody. M.: Nauka, 1973. 631 s. Bahvalov N.S. Numerical methods. M.: Nauka, 1973. 631 p.
Babicheva L.A., Bykovtsev G.I., Verveyko N.D. Luchevoy metod resheniya dinamicheskikh zadach uprugovyazkoplasticheskoy sredy // Prikladnaya matematika i mekhanika. 1973. T. 37. Vyp. 1. S. 77-87. Babicheva L.A., Bykovcev G.I., Verveyko N.D. The ray method for solving dynamic problems of an elasti viscoplasti conti Prikladnaya matemati a i mekhanika. 1973. Vol. 37. No. 1. Pp. 77-87.
Verveyko N.D., Egorov M.V. Matematicheskoe modelirovanie dinamicheskogo deformirovaniya uprugovyazkoplasticheskikh obolochek konechnoy dliny luchevym metodom // Vestnik SamG- TU. Seriya: Fiziko-matematicheskie nauki. Samara, 2018. № 2. S. 325-343. Verveyko N.D., Egorov M.V. Mathematical modeling of dynamic deformation of elastic-viscoplastic shells of finite length by the radiation method. Journal of Samara State Technical University. Series: Physical and Mathematical Sciences. 2018. No. 2. P. 325-343.
Verveyko N.D., SHashkin A.I., Krupenko S.E. Zarozhdenie i dvizhenie vershin treshchin za frontami uprugovyazkoplasticheskikh voln / Voronezhskiy gosudarstvennyy universitet. Voronezh: Kvarta, 2017. 124 s. Verveyko N.D., Shashkin A.I., Krupenko S.E. Nucleation and motion of crack tips behind fronts of elastic-viscoplastic waves. Voronezh: Kvarta. 2017, 134 p.
Gerasimenko E.A., Ragozina V.E. Geometricheskie i kinematicheskie ogranicheniya na razryvy funktsiy na dvizhushchikhsya poverkhnostyakh // Dal nevostochnyy matematicheskiy zhurnal. 2004. T. 5. № 1. S. 100-109. Gerasimenko E.A., Ragozina V.E. Geometric and kinematic constraints on discontinuities of functions on moving surfaces. Far Eastern Mathematical Journal. 2004. Vol. 5. No. 1. P. 100-109.
Egorov M.V. Dinamicheskoe deformirovanie osesimmetrichnoy obolochki vrashcheniya iz uprugovyazkoplasticheskogo materiala vblizi udarnykh voln // Vestnik CHGPU. Seriya: Mekhanika predel nogo sostoyaniya. 2016. № 2. S. 144-162. Egorov M.V. Dynamic deformation of an axisymmetric shell of revolution made of an elastic-viscoplastic material near shock waves. Bulletin of the Yakovlev Chuvash State Pedagogical University. Series: Mechanics of Limit State. 2016. No. 2. P. 144-162.
Sagomonyan A.YA. Volny napryazheniy v sploshnykh sredakh. M.: Izd-vo MGU, 1985. 416 s. Sagomonyan A.Y. Stress Waves in Continuum. M.: Moskovskij Gosudarstvennyj Universitet imeni M.V. Lomonosova, 1985. 416 p.
Svid-vo o gosudarstvennoy registratsii programmy dlya EVM / Egorov M.V. Zaregistrirovano v Reestre programm dlya EVM. № 2017660609 22.09.2017. Egorov M.V. The Certificate on Official Registration of the Computer Program. No. 2017660609, 2017.
Fang Tengxiang. Plastic analysis of circular cylindrical shell case under dynamic loading // Advances in Engineering Plasticity and its applications. Elsevier Science, 1993. R. 497-500.
Tabiei A., Tanov R. A nonlinear higher order shear deformation shell element for dynamic explicit analysis. Part I: Formulation and finite element equations. Finite Elements in Analysis and Design. 2000. Vol. 36. № 1. R. 17-37.
Keywords:
rotating shell, ray method, plasticity, dynamic deformation.