Analysis in the Problem of Group Pursuit of Multiple Goals for the Possibility of Simultaneous Achievement
( Pp. 56-62)

More about authors
Dubanov Alexander A. kandidat tehnicheskih nauk; docent
Banzarov Buryat State University
Ulan-Ude, Russian Federation
For read the full article, please, register or log in
Abstract:
This article discusses a kinematic model of the problem of group pursuit of a set of goals. The article discusses a variant of the model when all goals are achieved simultaneously. In this model, the direction of the speeds by the pursuer can be arbitrary, in contrast to the method of parallel approach. In the method of parallel approach, the velocity vectors of the pursuer and the target are directed to a point on the Apollonius circle. The proposed pursuit model is based on the fact that the pursuer tries to follow the predicted trajectory of movement. The predicted trajectory is a compound curve. A compound curve consists of a circular arc and a straight line segment. The pursuer's velocity vector applied to the point where the pursuer is located touches the given circle. The straight line segment passes through the target point and touches the specified circle. The resulting compound line serves as an analogue of the line of sight in the parallel approach method. The iterative process of calculating the points of the pursuer's trajectory is that the next point of position is the point of intersection of the circle centered at the current point of the pursuer's position, with the line of sight corresponding to the point of the next position of the target. The radius of such a circle is equal to the product of the speed of the pursuer and the time interval corresponding to the time step of the iterative process. The time to reach the goal of each pursuer is a dependence on the speed of movement and the minimum radius of curvature of the trajectory. Multivariate analysis of the moduli of velocities and minimum radii of curvature of the trajectories of each of the pursuers for the simultaneous achievement of their goals is based on the methods of multidimensional descriptive geometry. To do this, the projection planes are entered on the Radishchev diagram: the radius of curvature of the trajectory and speed, the radius of curvature of the trajectory and the time to reach the goal. The optimizing factors are the set time for reaching the goal and the set value of the speed of the pursuer. This method of constructing the trajectories of pursuers to achieve a variety of goals at given time values may be in demand by the developers of autonomous unmanned aerial vehicles.
How to Cite:
Dubanov A.A., (2021), ANALYSIS IN THE PROBLEM OF GROUP PURSUIT OF MULTIPLE GOALS FOR THE POSSIBILITY OF SIMULTANEOUS ACHIEVEMENT. Computational Nanotechnology, 2: 56-62. DOI: 10.33693/2313-223X-2021-8-2-56-62
Reference list:
Volkov V.YA., CHizhik M.A. Graficheskie optimizatsionnye modeli mnogofaktornykh protsessov: monografiya. Omsk: Izdatel sko-poligraficheskiy tsentr OGIS, 2009. 101 s.
Ayzeks R. Differentsial nye igry. M.: Mir, 1967.
Pontryagin L.S. Lineynaya differentsial naya igra ukloneniya // Trudy MIAN SSSR. 1971. T. 112. S. 30-63.
Krasovskiy N.N., Subbotin A.I. Pozitsionnye differentsial nye igry. M.: Nauka, 1974.
Petrosyan L.A. Differentsial nye igry presledovaniya. L.: Izd-vo LGU, 1977. 222 c.
Odnovremennoe dostizhenie tseli na ploskosti. URL: http://dubanov.exponenta.ru (data obrashcheniya 22.05.2021)/
Video, rezul taty programmy modelirovaniya odnovremennogo dostizheniya tseli. URL: https://www.youtube.com/watch v 7VNHNwCbWrg (data obrashcheniya: 22.05.2021).
Video, rezul taty modelirovaniya odnovremennogo dostizheniya dvukh tseley tremya presledovatelyami s vizualizatsiey seti liniy prognoziruemykh traektoriy. URL: https://www.youtube.com/watch v NNJDJOJT34I (data obrashcheniya: 22.05.2021).
Video, rezul taty modelirovaniya odnovremennogo dostizheniya dvukh tseley tremya presledovatelyami bez vizualizatsii seti liniy prognoziruemykh traektoriy. URL: https://www.youtube.com/watch v tdbgoNoby3A (data obrashcheniya: 22.05.2021).
Video, rezul taty modelirovaniya odnovremennogo dostizheniya dvukh tseley tremya presledovatelyami v naznachennye znacheniya vremeni. URL: https://www.youtube.com/watch app desktop v F6MTsWZL2BY feature youtu.be (data obrashcheniya: 22.05.2021).
Vagin D.A., Petrov N.N. Zadacha po presledovaniyu skoordinirovannykh begletsov // Izvestiya RAN. Teoriya i sistemy upravleniya. 2001. № 5. S. 75-79.
Bannikov A.S. Nekotorye nestatsionarnye zadachi gruppovogo presledovaniya // Trudy Instituta matematiki i informatiki UdGU. 2013. Vyp. 1 (41). C. 3-46.
Bannikov A.S. Nestatsionarnaya zadacha gruppovogo presledovaniya // Trudy Matematicheskogo tsentra imeni Lobachevskogo. Vyp. 34. Kazan : Izd-vo Kazanskogo matematicheskogo obshchestva, 2006. S. 26-28.
Izmest ev I.V., Ukhobotov V.I. Zadacha presledovaniya malomanevrennykh ob ektov s terminal nym mnozhestvom v vide kol tsa // Materialy mezhdunar. konf. Geometricheskie metody v teorii upravleniya i matematicheskoy fizike: differentsial nye uravneniya, integriruemost , kachestvennye teoriya . Ryazan , 15-18 sentyabrya 2016 g. Itogi nauki i tekhniki. Temat. obz. № 148. M.: VINITI RAN, 2018. S. 25-31.
Svidetel stvo o gosudarstvennoy registratsii programmy dlya EVM № 2020665641. Kinematicheskaya model metoda parallel nogo sblizheniya.
Svidetel stvo o gosudarstvennoy registratsii programmy dlya EVM № 2020666553. Modelirovanie traektorii presledovatelya na poverkhnosti metodom parallel nogo sblizheniya.
Svidetel stvo o gosudarstvennoy registratsii programmy dlya EVM № 2021618896. Modelirovanie metoda parallel nogo sblizheniya na poverkhnosti.
Svidetel stvo o gosudarstvennoy registratsii programmy dlya EVM № 2021618920. Model parallel nogo sblizheniya na ploskosti gruppy presledovateley s odnovremennym dostizheniem tseli.
Keywords:
multivariate analysis, Radishchev diagrams, target, pursuer, trajectory, radius of curvature.