COMPUTATIONAL ASPECTS OF SOLVING THE PROBLEM OF INTERACTION OF POPULATION GROUPS IN URBAN EDUCATION
( Pp. 48-52)
More about authors
Kiselev Dmitrii Olegovich
aspirant kafedry ANI fakulteta VMK
MSU
MSU
Abstract:
The article is devoted to the currently actual problem of the development and dynamics of the population in urban education from the point of view of spatial-dynamic approximation. The population is divided into different groups according to their economic and individual characteristics. For example, the population can be classified according to genetic and phenotypic characteristics, according to the level of income or education. The question of the peaceful and effective interaction of groups with each other is one of the most important tasks within any urban type of education. The author describes the problem of the interaction of two groups at a qualitative level using a system of two non-stationary nonlinear differential equations of diffusion type. Particular attention is paid to the disclosure of the numerical solution scheme of the selected model: the use of an explicit (in time) difference scheme of the “predictor-corrector” type has been analyzed in detail. In addition, the author conducts a series of computational experiments taking into account the selected assumptions regarding two specific groups of the population. Separately, the solution of the stochastic case and the features of its software implementation are considered. Based on the results of the study, the possibility of the applicability of the new approach to the problems of urban studies is substantiated. This work is the first step in the implementation of a program of using spatial economics to describe real processes in urban formations.
How to Cite:
Kiselev D.O., (2019), COMPUTATIONAL ASPECTS OF SOLVING THE PROBLEM OF INTERACTION OF POPULATION GROUPS IN URBAN EDUCATION. Computational Nanotechnology, 2 => 48-52.
Reference list:
Arnol d V.I. ZHestkie i myagkie matematicheskie modeli // Izd-vo Mosk. tsentra nepreryvnogo mat. obr. (MTSNMO, Moskva). 2004. 32 s.
Zhang W.-B. Synergetic economics: Time and change in nonlin-ear economics (Springer series in Synergetics) // Berlin, Germany: Springer-Verlag. 1991. 246 r.
Samarskiy A.A. Teoriya raznostnykh skhem // CRC Press, 2001. 786 s.
Purvis B., Mao Y., Robinson D. Entropy and its Application to Urban Systems // Entropy. 2019. 21. 56. DOI: 10.3390/e21010056.
Frederic G., Tarik C.G. Non-equilibrium spatial dynamics of eco-systems // Mathematical Biosciences. 2014. Vol. 255. P. 1-10. ISSN 0025-5564. DOI: 10.1016/j.mbs.2014.06.013.
Tekwa E.W., Gonzalez A., Loreau M. Spatial evolutionary dynamics produce a negative cooperation-population size relationship // The-oretical Population Biology. 2019. Vol. 125. P. 94-101. ISSN 0040- 5809. DOI: 10.1016/j.tpb.2018.12.003.
Biao Wang, Zhengce Zhang. Dynamics of a diffusive competition model in spatially heterogeneous environment // Journal of Mathematical Analysis and Applications. 2019. Vol. 470, Issue 1. P. 169-185. ISSN 0022-247X. DOI: 10.1016/j.jmaa.2018.09.062.
Drawert B., Jacob B., Zhen Li, Tau-Mu Yi, Petzold L. A hybrid smoothed dissipative particle dynamics (SDPD) spatial stochastic simulation algorithm (sSSA) for advection-diffusion-reaction problems // J. of Computational Physics. 2019. Vol. 378. P. 1-17. ISSN 0021-9991. DOI: 10.1016/j.jcp.2018.10.043.
Badillo-Hernandez U., Alvarez J., Alvarez-Icaza L. Efficient modeling of the nonlinear dynamics of tubular heterogeneous reactors // Computers Chemical Engineering. 2019. Vol. 123. P. 389-406. ISSN 0098-1354, DOI: 10.1016/j.compchemeng.2019.01.018.
Gang Xu, Limin Jiao, Jiafeng Liu, Zhongkui Shi, Chen Zeng, Yaolin Liu. Understanding urban expansion combining macro patterns and micro dynamics in three Southeast Asian megacities // Science of The Total Environment. 2019. Vol. 660. P. 375-383. ISSN 0048-9697. DOI: 10.1016/j.scitotenv.2019.01.039.
Papachristos G. System dynamics modelling and simulation for sociotechnical transitions research // Environmental Innovation and Societal Transitions. 2018. ISSN 2210-4224. DOI: 10.1016/j. eist.2018.10.001.
Leiqiu Hu, Wilhelmi O.V., Uejio C. Assessment of heat exposure in cities: Combining the dynamics of temperature and population // Science of The Total Environment. 2019. Vol. 655. P. 1-12. ISSN 0048-9697. DOI: 10.1016/j.scitotenv.2018.11.028.
Yanguang Chen. Urban chaos and replacement dynamics in nature and society // Physica A: Statistical Mechanics and its Applications. 2014. Vol. 413. P. 373-384. ISSN 0378-4371. DOI: 10.1016/j. physa.2014.06.060.
Lei Zhang, Ming Zhang, Yibin Yao. Mapping seasonal impervi-ous surface dynamics in Wuhan urban agglomeration, China from 2000 to 2016 // International Journal of Applied Earth Observa-tion and Geoinformation. 2018. Vol. 70. P. 51-61. ISSN 0303-2434. DOI: 10.1016/j.jag.2018.04.005.
Beckmann M., Puu T. Spatial economics: density, potential, and flow. Amsterdam. New York: North-Holland. New York, N.Y., U.S.A.: Sole distributors for the U.S.A. and Canada, Elsevier Science Pub. Co., 1985. 276 p
Zhang W.-B. Synergetic economics: Time and change in nonlin-ear economics (Springer series in Synergetics) // Berlin, Germany: Springer-Verlag. 1991. 246 r.
Samarskiy A.A. Teoriya raznostnykh skhem // CRC Press, 2001. 786 s.
Purvis B., Mao Y., Robinson D. Entropy and its Application to Urban Systems // Entropy. 2019. 21. 56. DOI: 10.3390/e21010056.
Frederic G., Tarik C.G. Non-equilibrium spatial dynamics of eco-systems // Mathematical Biosciences. 2014. Vol. 255. P. 1-10. ISSN 0025-5564. DOI: 10.1016/j.mbs.2014.06.013.
Tekwa E.W., Gonzalez A., Loreau M. Spatial evolutionary dynamics produce a negative cooperation-population size relationship // The-oretical Population Biology. 2019. Vol. 125. P. 94-101. ISSN 0040- 5809. DOI: 10.1016/j.tpb.2018.12.003.
Biao Wang, Zhengce Zhang. Dynamics of a diffusive competition model in spatially heterogeneous environment // Journal of Mathematical Analysis and Applications. 2019. Vol. 470, Issue 1. P. 169-185. ISSN 0022-247X. DOI: 10.1016/j.jmaa.2018.09.062.
Drawert B., Jacob B., Zhen Li, Tau-Mu Yi, Petzold L. A hybrid smoothed dissipative particle dynamics (SDPD) spatial stochastic simulation algorithm (sSSA) for advection-diffusion-reaction problems // J. of Computational Physics. 2019. Vol. 378. P. 1-17. ISSN 0021-9991. DOI: 10.1016/j.jcp.2018.10.043.
Badillo-Hernandez U., Alvarez J., Alvarez-Icaza L. Efficient modeling of the nonlinear dynamics of tubular heterogeneous reactors // Computers Chemical Engineering. 2019. Vol. 123. P. 389-406. ISSN 0098-1354, DOI: 10.1016/j.compchemeng.2019.01.018.
Gang Xu, Limin Jiao, Jiafeng Liu, Zhongkui Shi, Chen Zeng, Yaolin Liu. Understanding urban expansion combining macro patterns and micro dynamics in three Southeast Asian megacities // Science of The Total Environment. 2019. Vol. 660. P. 375-383. ISSN 0048-9697. DOI: 10.1016/j.scitotenv.2019.01.039.
Papachristos G. System dynamics modelling and simulation for sociotechnical transitions research // Environmental Innovation and Societal Transitions. 2018. ISSN 2210-4224. DOI: 10.1016/j. eist.2018.10.001.
Leiqiu Hu, Wilhelmi O.V., Uejio C. Assessment of heat exposure in cities: Combining the dynamics of temperature and population // Science of The Total Environment. 2019. Vol. 655. P. 1-12. ISSN 0048-9697. DOI: 10.1016/j.scitotenv.2018.11.028.
Yanguang Chen. Urban chaos and replacement dynamics in nature and society // Physica A: Statistical Mechanics and its Applications. 2014. Vol. 413. P. 373-384. ISSN 0378-4371. DOI: 10.1016/j. physa.2014.06.060.
Lei Zhang, Ming Zhang, Yibin Yao. Mapping seasonal impervi-ous surface dynamics in Wuhan urban agglomeration, China from 2000 to 2016 // International Journal of Applied Earth Observa-tion and Geoinformation. 2018. Vol. 70. P. 51-61. ISSN 0303-2434. DOI: 10.1016/j.jag.2018.04.005.
Beckmann M., Puu T. Spatial economics: density, potential, and flow. Amsterdam. New York: North-Holland. New York, N.Y., U.S.A.: Sole distributors for the U.S.A. and Canada, Elsevier Science Pub. Co., 1985. 276 p