Improved five-factor Altman evaluation model credit about the enterprise with economic indicators as fuzzy numbers
( Pp. 72-83)

More about authors
Shatalova Alevtina Yu. aspirant kafedry prikladnoy matematiki
Kuban State University Shevchenko Igor V. professor; dekan ekonomicheskogo fakulteta
Kuban State University Bamadio Boureima doktor fiziko-matematicheskih nauk; docent fakulteta ekonomiki i menedzhmenta (FSEG)
University of Social Sciences and management of Bamako Lebedev Konstantin A. doktor fiziko-matematicheskih nauk, professor; fakultet matematiki i kompyuternyh nauk
Kuban State University
For read the full article, please, register or log in
Abstract:
In this work, we used the Altman model, the apparatus of the theory of fuzzy sets and mathematical simulation in conditions of high uncertainty, in order to give more information to the decision maker about the creditworthiness of the enterprise, as well as the possible impact of the error on the conclusion of bankruptcy of the enterprise when calculating economic indicators.The improved Altman model, developed initially in two respects (the rms integral approximation is used to accurately calculate a quantitative credit rating and the apparatus of fuzzy sets in order to order sets according to the degree of confidence in the obtained probability), expanded by presenting the input data as triangular fuzzy numbers .As a result of the work done, it was possible to construct an algorithm for assessing the creditworthiness of a particular enterprise, which is based on the continuous dependence of the probability of bankruptcy on the value of the Altman function. The coefficients of the model can be triangular numbers with additional criteria for pre-reading at critical points of the classical Altman model.The work carried out a simulation of the assessment of creditworthiness for incoming fuzzy economic indicators in the form of α-sections of a fuzzy set to predict the impact of errors in the assessment of economic indicators on the conclusion of bankruptcy of an enterprise. The described improved Altman mathematical model with the procedure of a computational experiment (where the probability of bankruptcy of an enterprise is calculated 1000 times), supplemented by fuzzy indicators, allows you to find leftside and right-side sets of α-levels of the fuzzy set k i and calculate the effect of small changes in Altman coefficients on the estimate of the probability (its stability) of bankruptcy enterprises.This approach helps not only to adequately assess the creditworthiness of the enterprise, but also to enable it to predict the change in the result of the model due to a possible error in the input data.
How to Cite:
Shatalova A.Y., Shevchenko I.V., Bamadio B.., Lebedev K.A., (2020), IMPROVED FIVE-FACTOR ALTMAN EVALUATION MODEL CREDIT ABOUT THE ENTERPRISE WITH ECONOMIC INDICATORS AS FUZZY NUMBERS. Computational Nanotechnology, 1 => 72-83. DOI: 10.33693/2313-223X-2020-7-1-72-83
Reference list:
Bamadio B., Lebedev K.A. Programma dlya prinyatiya resheniy po otsenke kreditosposobnosti predpriyatiy (PDMSC). Svidetel stvo o gosudarstvennoy registratsii programmy dlya EVM № 2014660623 ot 20 oktyabrya 2014 g. v Federal noy sluzhbe po intellektual noy sobstvennosti, patentam i tovarnym znakam.
Bamadio B., Kuzyakina M.V., Lebedev K.A. Otsenki kreditosposobnosti predpriyatiya na osnove pyatifaktornoy modeli Al tmana pri ispol zovanii apparata nechetkikh mnozhestv i srednekvadratichnogo integral nogo priblizheniya // Politematicheskiy setevoy elektronnyy nauchnyy zhurnal Kubanskogo gos. agrarnogo un-ta (Nauchnyy zhurnal KubGAU) Elektronnyy resurs . Krasnodar: KubGAU, 2014. URL: http://ej.kubagro.ru/2014/10/pdf/39
Baranovskaya T.P., Kovalenko A.V., Urtenov M.KH., Karmazin V.N. Sovremennye matematicheskie metody analiza finansovo-ekonomicheskogo sostoyaniya predpriyatiya: monografiya. Krasnodar: KubGAU, 2009.
Bakhvalov N.S., ZHidkov N.P., Kobel kov G.M. CHislennye metody. M.: Nauka, 1999. 630 s.
Bukhgalterskaya otchetnost predpriyatiya OAO Teploset . 2014. Elektronnyy resurs URL: https://studopedia.ru/17 31841 praktichni-zavdannya.html
Davydova G.V., Belikov A.YU. Metodika kolichestvennoy otsenki riska bankrotstva predpriyatiy // Upravlenie riskom. 1999. № 3.
Diligenskiy N.V., Dymova L.G., Sevast yanov P.V. Nechetkoe modelirovanie i mnogokriterial naya optimizatsiya proizvodstvennykh sistem v usloviyakh neopredelennosti: tekhnologiya, ekonomika, ekologiya M.: Mashinostroenie-1, 2004.
Dontsova L.V. Analiz finansovoy otchetnosti. Nikiforova. 4-e izd., pererab. i dop. M.: Delo i Servis, 2006.
ZHdanov V.YU. Diagnostika riska bankrotstva promyshlennykh predpriyatiy: na primere predpriyatiy aviatsionno-promyshlennogo kompleksa: Dis. ... kand. ekon. nauk: 08.00.05. M., 2012.
Zade L. Ponyatie lingvisticheskoy peremennoy i ego primenenie k prinyatiyu priblizhennykh resheniy. M.: Mir, 1976.
Zaytseva O.P. Antikrizisnyy menedzhment v rossiyskoy firme // Sibirskaya finansovaya shkola. 1998. № 11-12.
Ibragimov V.A. Elementy nechetkoy matematiki. Baku, AGNA, 2010.
Kovalenko A.V. Matematicheskie modeli i instrumental nye sredstva kompleksnoy otsenki finansovo-ekonomicheskogo sostoyaniya predpriyatiya: Dis. ... kand. ekon. nauk: 06.03.2009. Krasnodar: Kubanskiy gos. agrarnyy un-t, 2009.
Kolmogorov A.N., Fomin S.V. Elementy torii funktsiy i funktsional nogo analiza. M.: Nauka, 1976.
Konysheva L.K., Nazarov D.M. Osnovy teorii nechetkikh mnozhestv. SPb.: Piter, 2011.
Kofman A., Alukha KH.KH. Vvedenie teorii nechetkikh mnozhestv v upravlenii predpriyatiem. Minsk: Vysshaya shkola, 1992.
Kuznetsov L.A., Perevozchikov A.V. Otsenka kreditnoy istorii fizicheskikh lits na osnove nechetkikh modeley // Upravlenie bol shimi sistemami. IPU RAN. 2008. Vyp. 21.
Nedosekin A.O. Metodologicheskie osnovy modelirovaniya finansovoy deyatel nosti s ispol zovaniem nechetko-mnozhestvennykh opisaniy: Dis. ... d-ra ekon. nauk. SPb.: SPbGUEF, 2004.
Patlasov O.YU. Primenenie modeley i kriteriev Al tmana v analize finansovogo sostoyaniya sel khozpredpriyatiy // Finansovyy menedzhment. 2006. № 6. Elektronnyy resurs URL: http://dis.ru/library/699/26221/
Pegat A. Nechetkoe modelirovanie i upravlenie / per. s angl. 2-e izd. (el.). M.: BINOM. Laboratoriya znaniy, 2013. 798 s.
Savitskaya G.V. Analiz khozyaystvennoy deyatel nosti predpriyatiya. 4-e izd., pererab. i dop. Minsk: OOO Novoe znanie , 2000.
Sal kova M.V. Metodika analiza i prognozirovaniya deyatel nosti organizatsii v tselyakh vyyavleniya i preduprezhdeniya nesostoyatel nosti (bankrotstva) // Materialy VI Mezhdunar. stud. elektronnoy nauch. konf. Studencheskiy nauchnyy forum , 2014. URL: http://www.scienceforum.ru/2014/576/1184
Fomin P.A. Osobennosti ucheta finansovykh riskov pri prognoze dinamiki razvitiya khozyaystvuyushchego sub ekta // Finansy i kredit. 2003. № 4.
KHarin YU.S., Malyugin V.I., Kirlitsa V.P. i dr. Osnovy imitatsionnogo i staticheskogo modelirovaniya. Minsk: Dizayn PRO, 1997.
SHeremet A.D., Sayfulin R.S., Negashev E.V. Metodika finansovogo analiza. M.: INFRA-M, 2000.
SHatalova A.YU., Lebedev K.A. Parametricheskiy -urovnevyy metod -prodolzheniya dlya zadachi nechetkogo lineynogo programmirovaniya // Vestnik Buryatskogo gosudarstvennogo universiteta. Matematika, informatika. 2018. № 1.
SHatalova A.YU., Lebedev K.A. Usovershenstvovannyy metod Al tmana dlya otsenki kreditosposobnosti predpriyatiya // Vestnik nauchnykh konferentsii. 2018. № 4-2 (32). S. 119-122.
SHatalova A.YU., Lebedev K.A. Prikladnye rezul taty modeli otsenki kreditosposobnosti predpriyatiya s primeneniem teorii nechetkikh mnozhestv i teorii Al tmana // Vestnik nauchnykh konferentsiy. 2017. № 8-2 (24). S. 120-121.
SHatalova A.YU., Lebedev K.A. Nechetkoe lineynoe programmirovanie v zadache optimal nogo finansirovaniya investitsionnykh proektov, maksimiziruyushchey poluchaemyy predpriyatiem dokhod // Mezhdunarodnyy zhurnal prikladnykh i fundamental nykh issledovaniy. 2015. № 9. CH. 1.
Altman E.I. Financial ratios, discriminant analysis and the prediction of corporate bankruptcy // Journal of Finance. 1968. No. 23 (4).
Bamadio B., Lebedev K.A., Shevchenko I.V. Improvement of a five factor Altman model to assess the creditworthiness of an enterprise using the theory of fussy sets // Journal of Computations Modelling. 2016. Vol. 6. No. 4.
Beaver W. Financial Ratio as Predictors of Failure, Empirical Research in Accounting // Journal of Accounting Research. 1967. No. 4.
Deluca A., Termini S. A definition of a non-probabilistic entropy the of fuzzy sets theory // Information and Control. 1972. No. 4.
Fulmer J. A bankruptcy classification model for small finns // Journal of Commercial Bank Lending. 1984. No. 6.
Hiyama T., Sameshima T. Fuzzy logic control scheme for an-line stabilization of multi-machine power system // Fuzzy Sets and Systems. 1991. Vol. 39.
Taffler R.J. Going, going, gone - four factors which predict // Accountancy. 1997. No. 3.
Matematicheskie metody v modelirovanii ekonomiki Elektronnyy resurs . Natsional nyy otkrytyy universitet Intuit . M., 2003-2019. URL: https://www.intuit.ru/ (data obrashcheniya: 24.06.2019).
Keywords:
enterprise credit rating, Altman models, fuzzy sets, membership function, fuzzy measure, simulation, decision making under conditions of uncertainty, errors in financial statements.


Related Articles

Issue №20323
Analysis of the Prospects for the IoT Technology in the Electric Power Industry
IoT predictive maintenance cost-effectiveness cost recovery simulation
Show more
Issue №10386
SIMULATION MODELING IN ECONOMIC OPTIMIZATION
simulation covariance correlation verification of the model validation
Show more
Issue №21250
Formation of Trust in the Financial Market by Economic Institutions
trust financial market interest groups financial asset valuation models smart contracts
Show more
Issue №5869
Simulation experimental research on the magnitude of metal removal from regimes waterjet processing using information technologies
simulation water jet cutting statistical analysis object-oriented programming abrasive
Show more
Issue №5121
THE DEVELOPMENT OF AUTOMATED HARDWARE AND SOFTWARE SYSTEM FOR INTELLECTUAL SUPPORT, AND THE OPTIMUM HYDROABRASIVE MACHINES WITH CNC
simulation water jet cutting statistical analysis object-oriented programming abrasive
Show more
Issue №16112
Improved five-factor Altman evaluation model credit about the enterprise with economic indicators as fuzzy numbers
enterprise credit rating Altman models fuzzy sets membership function fuzzy measure
Show more
Issue №9675
ANALYSIS OF SOME LINEAR-ELECTRICAL FILTERS IN OPTO-ELECTRIC OF THE TELECOMMUNICATION NETWORKS
electric filter the Bessel filter the Chebyshev filter filter Butterworth jitter
Show more
Issue №9675
5.2. ANALYSIS OF SOME LINEAR-ELECTRICAL FILTERS IN OPTO-ELECTRIC OF THE TELECOMMUNICATION NETWORKS
electrical filter filter of Bessel filter of Chebyshev filter of Butterworth jitter
Show more
Issue №20773
Building Trust in the Financial Market
trust financial market interest groups financial asset valuation models smart contracts
Show more
Issue №4641
Mathematical models of analysis of the risk that arise from mergers of aerospace industry enterprises
risks mathematical modeling high-tech industries the enterprise RCP simulation
Show more