Development of Micro-conductors with Magnetically Soft Glass Coating for Technological Applications
( Pp. 30-35)

More about authors
Ibragimov Khusrav F. graduate student at the National University of Science and Technology “MISiS”. Moscow, Russian Federation. E-mail: Khusrav.ibragimov@mail.ru
National University of Science and Technology «MISiS»
Moscow, Russian Federation Gerasimova Alla A. Candidate of Engineering, Associated Professor; National University of Science and Technology “MISiS”. Moscow, Russian Federation. ORCID: https://orcid.org/0000-0002-1317-9025; Scopus Author ID: 54404655200; Researcher ID: AAD-7091-2021; РИНЦ Author ID: 872766; E-mail: allochka@rambler.ru Sheshenin Egor V. student at the National University of Science and Technology “MISiS”. Moscow, Russian Federation. E-mail: sheshenin1999@mail.ru Chut Maxim student at the National University of Science and Technology “MISiS”. Moscow, Russian Federation. E-mail: mars.chut11@gmail.com
Abstract:
The work is devoted to advanced research of glass-coated microconductors as a special class of amorphous metal alloys. These magnetic microwires are model systems for fundamental research of a number of physical phenomena that are difficult to access in other conventional magnetic materials. The increased magnetic softness combined with their small size made them very promising for many modern technological applications. The authors attempted to demonstrate the development of microconducts with a magnetically soft glass coating from three closed points of view: control of internal stresses by changing the ratio between the diameter of the metal core and the thickness of the glass; achievement of a nanocrystalline state using two-phase nanoscale crystallites embedded in an amorphous matrix; control of heat treatment conditions before any participation of crystalline phases, i.e. weakening of internal stresses, frozen after the manufacturing process.
How to Cite:
Ibragimov Kh.F., Gerasimova A.A., Sheshenin E.V., Chut M. Development of Micro-conductors with Magnetically Soft Glass Coating for Technological Applications. Computational Nanotechnology. 2023. Vol. 10. No. 1. Pp. 30–35. (In Rus.) DOI: 10.33693/2313-223X-2023-10-1-30-35
Reference list:
Ipatov M., Zhukova V., Gonzalez J., Zhukov A. Manipulating the magnetoimpedance by DC bias current in amorphous microwire. Journal of Magnetism and Magnetic Materials. 2012. No. 324 (23). Pp. 4078–4083. DOI: https://doi.org/10.1016/j.jmmm.2012.07.024.
Seok Byon K., Yu S., Kim C.G., Vazquez M. Bias-current effect on giant magnetoimpedance in co-based amorphous microwire. Journal of Non-Crystalline Solids. 2001. No. 287 (1-3). Pp. 339–343. DOI: https://doi.org/10.1016/s0022-3093(01)00579-8.
Soft magnetic materials – technologies, materials, devices, new developments, industry structure and global markets. Report summary. London, 2015, August.
Jiles D. Recent advances and future directions in magnetic materials. Acta Materialia. 2003. No. 51 (19). Pp. 5907–5939. DOI: https://doi.org/10.1016/j.actamat.2003.08.011.
Soft magnetic application guide. The Magnetic Products Group of SPS Technologies 1-36. The Arnold Engineering Co., 2003.
Jagadeesh P., Puttegowda M., Rangappa S.M. et al. A comprehensive review on 3D printing advancements in polymer composites: Technologies, materials, and applications. The International Journal of Advanced Manufacturing Technology. 2022. No. 121 (1-2). Pp. 127–169. DOI: https://doi.org/10.1007/s00170-022-09406-7.
Shakhov S.I., Kabakov Z.K., Gorbatyuk S.M. et al. Impro-vements to electromagnetic stirring systems for billet and bloom continuous casting machines. Part 1. Metallurgist. 2022. No. 66 (5-6). Pp. 510–517. DOI: 10.1007/s11015-022-01354-7.
Onufer J., Ziman J., Kladivova M. Unidirectional effect in domain wall propagation observed in bistable glass-coated microwire. Journal of Magnetism and Magnetic Materials. 2015. No. 396. Pp. 313–317. DOI: https://doi.org/10.1016/j.jmmm.2015.08.055.
Landau L.D., Lifshitz E.M. Electrodynamics of continuous media. New York: Pergamon Press, 1975.
Pirota K.R., Kraus L., Knobel M. et al. Angular dependence of giant magnetoimpedance in an amorphous Co-Fe-Si-B ribbon. Physical Review B. 1999. No. 60 (9). Pp. 6685–6691. DOI: https://doi.org/10.1103/PhysRevB.60.6685.
Gerasimova A.A. Regularities of deformation of materials and improvement of their quality under various processing modes. Symbol of Science. 2019. No. 9. Pp. 17–20.
Panina L., Dzhumazoda A., Nematov M. et al. Soft magnetic amorphous microwires for stress and temperature sensory applications. Sensors. 2019. No. 19 (23). P. 5089. DOI: https://doi.org/10.3390/s19235089.
Vazquez M., Chiriac H., Zhukov A. et al. On the state-of-the-art in magnetic microwires and expected trends for scientific and Technological Studies. Physica Status Solidi (a). 2011. No. 208 (3). Pp. 493–501. DOI: https://doi.org/10.1002/pssa.201026488.
Herrero-Gomez C., Aragon A.M., Hernando-Rydings M. et al. Stress and field contactless sensor based on the scattering of electromagnetic waves by a single ferromagnetic microwire. Applied Physics Letters. 2014. No. 105 (9). P. 092405. DOI: https://doi.org/10.1063/1.4894732.
Zhukova V., Talaat A., Ipatov M. et al. (). Optimization of soft magnetic properties in nanocrystalline Fe-rich glass-coated microwires. JOM. 2015. No. 67 (9). Pp. 2108–2116. DOI: https://doi.org/10.1007/s11837-015-1546-x.
Keywords:
magnetostatics, amorphous alloys, magnetization process, magnetostriction, thinning, microconducting.


Related Articles

Mathematical and Software of Computers, Complexes and Computer Networks Pages: 104-111 DOI: 10.33693/2313-223X-2024-11-1-104-111 Issue №95355
Улучшенная электронная микроскопия в обработке изображений для анализа аморфных сплавов: электронно-микроскопический анализатор изображения кластера (EMICA). Инструмент и результаты
amorphous alloys electron microscopy cluster analysis clustering software tools
Show more
Mathematical and Software of Computers, Complexes and Computer Networks Pages: 112-120 DOI: 10.33693/2313-223X-2024-11-1-112-120 Issue №95355
Исследование аморфных сплавов: расширенная электронная микроскопия и кластерный анализ
amorphous alloys electron microscopy cluster analysis metallic glasses radial distribution function
Show more