FORMATION OF CYLINDRICAL VECTOR BEAMS OF HIGH ORDER BASED ON POLARIZING TRANSFORMATIONS IN UNIAXIAL CRYSTALS
( Pp. 19-27)

More about authors
Honina Svetlana Nikolaevna doktor fiz.-mat. nauk, professor
Federalnoe gosudarstvennoe byudzhetnoe uchrezhdenie nauki Institut sistem obrabotki izobrazheniy Rossiyskoy Aakademii Nauk, Samarskiy gosudarstvennyy aerokosmicheskiy universitet imeni akademika S.P. Koroleva (nacionalnyy issledovatelskiy universitet) Karpeev Sergey V. doktor fiziko-matematicheskih nauk, professor Samarskogo gosudarstvennogo aerokosmicheskogo universiteta imeni akademika S.P. Koroleva; veduschiy nauchnyy sotrudnik Instituta sistem obrabotki izobrazheniy RAN
Image Processing Systems Institute of the Russian Academy of Sciences, Samara State Aerospace University, Samara Alferov Sergei V. kandidat fiziko-matematicheskih nauk, inzhener laboratorii NIL-97
Samara State Aerospace University, Samara Soyfer Viktor Aleksandrovich doktor tehn. nauk, professor, chlen-korrespondent RAN.
Federalnoe gosudarstvennoe byudzhetnoe uchrezhdenie nauki Institut sistem obrabotki izobrazheniy Rossiyskoy Aakademii Nauk, Samarskiy gosudarstvennyy aerokosmicheskiy universitet imeni akademika S.P. Koroleva (nacionalnyy issledovatelskiy universitet)
Abstract:
Theoretical and experimental investigations of the formation of cylindrical vector beams in birefringent crystals are implemented in the paraxial and nonparaxial cases. Two foci corresponding to the ordinary and extraordinary beams are formed by tight focusing (in nonparaxial case) along the axis of the crystal. The presence of the first-order vortex phase in circularly polarized incident beam allows to form in the crystal two foci with radial and azimuthal polarization. These results are generalized to the case of formation of radially and azimuthally polarized laser beams of higher orders. Experiments are carried out with a crystal of Iceland spar
How to Cite:
Honina S.N., Karpeev S.V., Alferov S.V., Soyfer V.A., (2014), FORMATION OF CYLINDRICAL VECTOR BEAMS OF HIGH ORDER BASED ON POLARIZING TRANSFORMATIONS IN UNIAXIAL CRYSTALS. Computational Nanotechnology, 2 => 19-27.
Reference list:
Sato S. and Kozawa Y. Radially polarized annular beam generated through a second-harmonic-generation process // Opt Lett.- 2009. - Vol. 34(20). - P. 3166-3168
Ishaaya A.A., Vuong L.T., Grow T.D., and Gaeta A. L., Self-focusing dynamics of polarization vortices in Kerr media // Opt. Lett. -2008. - Vol. 33. - P.13-15
Chen W. and Zhan Q. Realization of an evanescent Bessel beam via surface plasmon interference excited by a radially polarized beam // Opt. Lett. - 2009. - Vol. 34. - P. 722-724.
Cicchitelli L., Hora H., and Postle R. Longitudinal components for laser beams in vacuum // Phys. Rev. A - 1990. - V. 41. - P. 3727-3732.
Salamin Y.I. Electron acceleration from rest in vacuum by an axicon Gaussian laser beam // Phys. Rev. A. - 2006. - V. 73. - P. 043402.
Karmakar A., Pukhov A. Collimated attosecond GeV electron bunches from ionization of high-Z material by radially polarized ultra-relativistic laser pulses // Laser Part. Beams - 2007. - V. 25 (3). - P 371-377.
Bochkarev S.G., Popov K.I., Bychenkov V.YU. Vakuumnoe uskorenie elektronov relyativistski-sil nym ostrosfokusirovannym lazernym impul som radial noy polyarizatsii // Fizika plazmy. - 2011. - T. 37, № 7. - S. 648-660
Gabriel C., Aiello A., Zhong W., Euser T.G., Joly N.Y., Banzer P., F rtsch M., Elser D., Andersen U.L., Marquardt Ch., Russell P. St. J., and Leuchs G. Entangling different degrees of freedom by quadrature squeezing cylindrically polarized modes // Phys. Rev. Lett. - 2011. - Vol. 106. - P. 060502.
Barreiro J.T., Wei T.C., and Kwiat P.G. Remote preparation of single-photon quot;hybrid quot; entangled and vector-polarization states // Phys. Rev. Lett. - 2010. - Vol. 105. - P. 030407.
Zhao Y.Q., Edgar J.S., Jeffries G.D.M., McGloin D., and Chiu D.T. Transient optical spin-to-orbital angular momentum conversion in a strongly focused beam // Phys. Rev. Lett. - 2007. - Vol. 99. - P. 073901.
Wang X.L., Chen J., Li Y.N., Ding J.P., Guo C.S., and Wang H.T. Optical orbital angular momentum from the curl of polarization // Phys. Rev. Lett. - 2010. - Vol. 105. - P. 253602.
Biss D.P., Youngworth K.S., and Brown T.G. Dark field imaging with cylindrical-vector beams // Appl. Opt. - 2006. - Vol. 45. - P. 470 -479.
Lu F., Zheng W., and Huang Z. Coherent anti-Stokes Raman scattering microscopy using tightly focused radially polarized light // Opt. Lett. - 2009. - Vol. 34. - P. 1870-1872.
T r k P. and Munro P.R.T. The use of Gauss- Laguerre vector beams in STED microscopy // Opt. Express - 2004. - Vol. 12. - P. 3605 -3617.
Bokor N., Iketabi Y., Watanabe T., Daigoku K., Davidson N., and Fujii M. On polarization effects in fluorescence depletion mi-croscopy // Opt. Commun. - 2007. - Vol. 272. - P. 263-268.
Khonina S.N. and Golub I. How low can STED go Comparison of different write-erase beam combinations for stimulated emission depletion microscopy // J. Opt. Soc. Am. A. - 2012. - Vol. 29, No. 10. - P. 2242-2246.
Niziev V.G., Nesterov A.V. Influence of beam polarization on laser cutting efficiency // J. Phys. D: Appl. Phys.- 1999. - Vol. 32.- P 1455-1461.
Meier M., Romano V., and Feurer T. Material processing with pulsed radially and azimuthally polarized laser radiation // Appl. Phys. A. - 2007. - Vol. 86. - P. 329-334.
Kraus M., Ahmed M.A., Michalowski A., Voss A., Weber R., and Graf T. Microdrilling in steel using ultrashort pulsed laser beams with radial and azimuthal polarization // Optics Express. - 2010. - Vol. 18, No. 21. - P. 22305.
Venkatakrishnan K. and Tan B. Generation of radially polarized beam for laser micromachining // Journal of Laser Micro/Nanoengineering. - 2012. - Vol. 7, No. 3. - P. 274-278
Hnatovsky C., Shvedov V.G., Shostka N., Rode A.V., and Krolikowski W. Polarization-dependent ablation of silicon using tightly focused femtosecond laser vortex pulses // Optics Letters. - 2012. - Vol. 37, No. 2. - P. 226-228.
Dorn R., Quabis S., and Leuchs G. Sharper focus for a radially polarized light beam // Phys. Rev. Lett. - 2003. - Vol. 91. - P. 233901.
Kozawa Y. and Sato S. Dark spot formation by vector beams // Opt. Lett. - 2008. - Vol. 33. - P. 2326 - 2329 Sato S. and Kozawa Y. Hollow vortex beams // J. Opt. Soc. Am. A. - 2009. - Vol. 26. - P. 142-146.
Zhan Q. Cylindrical vector beams: from mathematical concepts to applications // Advances in Optics and Photonics. - 2009. - Vol. 1. - P. 1-57.
Khonina S.N. and Golub I. Enlightening darkness to diffraction limit and beyond: comparison and optimization of different polarizations for dark spot generation // J. Opt. Soc. Am. A. - 2012. - Vol. 29, No. 7. - P. 1470-1474.
Kozawa Y. and Sato S. Sharper focal spot formed by higher-order radially polarized laser beams // J. Opt. Soc. Am. A - 2007. - Vol. 24. - P. 1793-1798.
Khonina S.N., Alferov S.V., Karpeev S.V. Strengthening the longitudinal component of the sharply focused electric field by means of higher-order laser beams // Optics Letters. - 2013. - Vol. 38(17). - P. 3223-3226.
Methods for Computer Design of Diffractive Optical Elements / V.A. Soifer, V.V. Kotlyar, N.L. Kazanskiy, L.L. Doskolovich, S.I. Kharitonov, S.N. Khonina, V.S. Pavelyev, R.V. Skidanov, A.V. Volkov, D.L. Golovashkin, V.S. Solovyev, G.V. Usplenyev. - Ed. by V.A. Soifer. - New York: John Wiley Sons, Inc., 2002. - 765 p.
Computer Design of Diffractive Optics / D.L. Golovashkin, V.V. Kotlyar, V.A. Soifer, L.L. Doskolovich, N.L. Kazanskiy, V.S. Pavelyev, S.N. Khonina, R.V. Skidanov. - Ed. by V.A. Soifer. - Cambridge: Woodhead Publishing Limited, 2012. - 896 p.
Oron R., Blit S., Davidson N. and Friesem A.A. The formation of laser beams with pure azimuthal or radial polarization / // Applied Physics Letters. - 2000. - V. 77, Issue 21. - P. 3322-3324.
Machavariani G., Lumer Y., Moshe I., Meir A., Jackel S., and Davidson N. Birefringence-induced bifocusing for selection of radially or azimuthally polarized laser modes, Applied Optics. - 2007. - V. 46. - P. 3304-3310.
Yonezawa K., Kozawa Y., and Sato S. Compact laser with radial polarization using birefringent laser medium // Japanese Journal of Applied Physics. - 2007. - V. 46. - P. 5160-5163.
Tidwell S.C., Ford D.H. and Kimura W.D. Generating radially polarized beams interferometrically // Applied Optics. - 1990. - V. 29. - P. 2234-2239.
Passilly N., de Saint Denis R., A t-Ameur K., Treussart F., Hierle R. and Roch J.-F. Simple interferometric technique for generation of a radially polarized light beam // J. Opt. Soc. Am. A. - 2005. - V. 22(5). - P. 984-991.
Khonina S.N., Karpeev S.V. Grating-based optical scheme for the universal generation of inhomogeneously polarized laser beams // Applied Optics. - 2010. - V. 49(10). - P. 1734-1738.
Fadeyeva T., Shvedov V., Shostka N., Alexeyev C., and Volyar A. Natural shaping of the cylindrically polarized beams // Optics Letters. - 2010. - V. 35(22). - P. 3787-3789.
Loussert C. and Brasselet E. Efficient scalar and vectorial singular beam shaping using homogeneous anisotropic media // Optics Letters. - 2010. - V. 35. - P. 7-9.
Fadeyeva T.A., Shvedov V.G., Izdebskaya Y.V., Volyar A.V., Brasselet E., Neshev D.N., Desyatnikov A.S., Krolikowski W., and Kivshar Y.S. Spatially engineered polarization states and optical vortices in uniaxial crystals // Optics Express. - 2010. - V. 18(10). - P. 10848-10863.
KHonina S.N., Volotovskiy S.G., KHaritonov S.I. Osobennosti neparaksial nogo rasprostraneniya gaussovykh i besselevykh mod vdol osi kristalla // Komp yuternaya optika. - 2013. - T. 37, № 3. - S. 297-306
Tian B. and Pu J. Tight focusing of a double-ring-shaped, azimuthally polarized beam // Opt. Lett. 36, 2014-2016 (2011).
Khonina S.N., Karpeev S.V. Generating inhomogeneously polarized higher-order laser beams by use of DOEs beams // Journal of the Optical Society of America A. - 2011. - V. 28(10). - P. 2115-2123.
Khonina S.N., Karpeev S.V., Alferov S.V. Polarization converter for higher-order laser beams using a single binary diffractive optical element as beam splitter // Optics Letters. - 2012. - V. 37(12). - P. 2385-2387.
KHonina S.N., Volotovskiy S.G., KHaritonov S.I. Periodicheskoe izmenenie intensivnosti modovykh lazernykh puchkov pri rasprostranenii v anizotropnykh odnoosnykh kristallakh // Izvestiya Samarskogo nauchnogo tsentra RAN. - 2012. - T.14, № 4.- S. 18-27.
Prudnikov A.P., Brychkov YU.A., Marichev O.I. Integraly i ryady. Spetsial nye funktsii. - M: Nauka. Glavnaya redaktsiya fiziko-matematicheskoy literatury, 1983. - 752 s.
KHonina S.N., Karpeev S.V., Alfyerov S.V. Teoreticheskoe i eksperimental noe issledovanie polyarizatsionnykh preobrazovaniy v odnoosnykh kristallakh dlya polucheniya tsilindricheskikh vektornykh puchkov vysokikh poryadkov // Komp yuternaya optika. - 2014. - T. 38, № 2. - S. 171-180.
Karpeev S.V., KHonina S.N., Kazanskiy N.L., Moiseev O.YU. Formirovanie polyarizatsionno-neodnorodnykh lazernykh puchkov vysokogo poryadka na osnove puchkov s krugovoy polyarizatsiey // Komp yuternaya optika. - 2011.- T. 35, № 2. - S. 224-230.
Khonina S.N., Balalayev S.A., Skidanov R.V., Kotlyar V.V., Paivanranta B., Turunen J. Encoded binary diffractive element to form hyper-geometric laser beams // Journal of Optics A: Pure and Applied Optics. - 2009. - V. 11. - P. 065702 (7pp).
Kazanskiy N.L. Research education center of diffractive optics // Proceedings of SPIE. - 2012. - V. 8410. - P. 84100R.
Zhan Q., Leger J.R. Focus shaping using cylindrical vector beams // Optics Express. - 2002. - V. 10, Issue 7. - P. 324-331.
Hao B., Leger J. Numerical aperture invariant focus shaping using spirally polarized beams // Optics Communications. - 2008. - V. 281. - P. 1924-1928.
Khonina S.N., Kotlyar V.V., Soifer V.A., Lautanen J., Honkanen M., Turunen J. Generating a couple of rotating nondiffarcting beams using a binary-phase DOE // Optik.- 1999. - Vol. 110, No. 3. - P. 137-144.
Keywords:
uniaxial crystal, cylindrical vector beams, laser beams of a high order, the polarization conversion.


Related Articles