( Pp. 104-107)

More about authors
Lebedeva Marina V. kandidat himicheskih nauk; docent kafedry fizicheskoy himii im. Ya.K. Syrkina
MIREA - Russian Technological University Ragutkin Alexander V. kandidat tehnicheskih nauk; prorektor po innovacionnomu razvitiyu
MIREA - Russian Technological University Yashtulov Nicolay A. doktor himicheskih nauk; professor kafedry energeticheskih tehnologiy, sistem i ustanovok
MIREA - Russian Technological University Antropov Alexey P. kandidat tehnicheskih nauk; docent kafedry energeticheskih tehnologiy, sistem i ustanovok
MIREA - Russian Technological University
For read the full article, please, register or log in
In paper electrode materials with palladium nanoparticles on polymer matrix substrates for energy sources have been formed. Nanocomposites were investigated by atomic force and scanning electron microscopy. The catalytic activity of formed electrodes in the formic acid oxidation reaction was evaluated by voltammetry method.
How to Cite:
Lebedeva M.V., Ragutkin A.V., Yashtulov N.A., Antropov A.P., (2019), NANOELECTROCATALYSTS BASED PALLADIUM FOR FUEL CELLS WITH DIRECT OXIDATION OF FORMIC ACID. Computational Nanotechnology, 3: 104-107. DOI: 10.33693/2313-223X-2019-6-3-104-107
Reference list:
Mazurkiewicz-Pawlicka M., Malolepszy A., Mikolajczuk-Zychora A. et al. Simple method for enhancing the catalytic activity of Pd deposited on carbon nanotubes used in direct formic acid fuel cells // Applied Surface Science. 2019. № 476. P. 806-814.
Ma T., Li C., Liu T. et al. Size-controllable synthesis of dendritic Pd nanocrystals as improved electrocatalysts for formic acid fuel cells application // Journal of Saudi Chemical Society. 2018. № 22. P. 846-854.
Kang Y., Ren M., Zou Z. et al. Improved electrocatalytic performance of Pd nanoparticles with size-controlled Na on aggregates for formic acid oxidation // Electrochimica Acta. 2010. № 55. P. 5274-5280.
Ozoemena K.I., Chen S. Nanomaterials for fuel cell catalysis. Springer, 2016. 583 p.
YAshtulov N.A., Lebedeva M.V. Vodorodnaya energetika vozobnovlyaemykh istochnikov toka // Rossiyskiy tekhnologicheskiy zhurnal. 2017. № 5. S. 58-73.
Dresch M.A., Isidoro R.A., Linardi M. et al. Influence of solgel media on the properties of Na on-SiO2 hybrid electrolytes for high performance proton exchange membrane fuel cells operating at high temperature and low humidity // Electrochimica Acta. 2013. № 94. P. 353-359.
Spry D.B., Goun A., Glusac K. et al. Proton transport and the water environment in Nafion fuel cell membranes and AOT reverse micelles // Journal of American Chemical Society. 2007. № 129. R. 8122-8130.
Hasanabadi N., Ghaffarian S.R., Hasani-Sadrabadi M.M. Nafionbased magnetically aligned nanocomposite proton exchange membranes for direct methanol fuel cells // Solid State Ionics. 2013. № 232. P. 58-67.
Wang Z., Tang H., Zhang H. et al. Synthesis of Nafion/CeO2 hybrid for chemically durable proton exchange membrane of fuel cell // Journal of Membrane Science. 2012. № 421-422. P. 201-210.
Lebedeva M.V., Antropov A.P., Ragutkin A.V., Yashtulov N.A. The electrode materials based on carbon nanotubes and polymer matrix modi ed with platinum catalysts for chemical power sources // International Journal of Applied Engineering Research. 2018. № 13. P. 16774-16777.
Lebedeva M.V., YAshtulov N.A., Flid V.R. Nanokatalizatory palladiya na kombinirovannykh matritsakh-nositelyakh dlya portativnykh istochnikov toka // Kinetika i kataliz. 2019. № 60. S. 147-151.
Ru C., Gu Y., Duan Y. et al. Enhancement in proton conductivity and methanol resistance of Na on membrane induced by blending sul-fonated poly(arylene ether ketones) for direct methanol fuel cells // J. Membrane Science. 2019. № 573. P. 439-447.