Platinum nanoelectrocatalysts for hydrogen-air energy sources
( Pp. 26-29)
More about authors
Lebedeva Marina V.
kandidat himicheskih nauk; docent kafedry fizicheskoy himii im. Ya.K. Syrkina
MIREA - Russian Technological University Antropov Alexey P. kandidat tehnicheskih nauk; docent kafedry energeticheskih tehnologiy, sistem i ustanovok
MIREA - Russian Technological University Ragutkin Alexander V. kandidat tehnicheskih nauk; prorektor po innovacionnomu razvitiyu
MIREA - Russian Technological University Yashtulov Nicolay A. doktor himicheskih nauk; professor kafedry energeticheskih tehnologiy, sistem i ustanovok
MIREA - Russian Technological University
MIREA - Russian Technological University Antropov Alexey P. kandidat tehnicheskih nauk; docent kafedry energeticheskih tehnologiy, sistem i ustanovok
MIREA - Russian Technological University Ragutkin Alexander V. kandidat tehnicheskih nauk; prorektor po innovacionnomu razvitiyu
MIREA - Russian Technological University Yashtulov Nicolay A. doktor himicheskih nauk; professor kafedry energeticheskih tehnologiy, sistem i ustanovok
MIREA - Russian Technological University
Abstract:
The aim of this work was to form new effective electrode materials with platinum nanoparticles on polymer matrix substrates for energy sources. On the basis of atomic force and scanning electron microscopy data the size, shape and distribution of nanoparticles in the polymer matrix had been evaluated. The studies of composites in the reaction of hydrogen oxidation and oxygen reduction by voltammetry allowed to estimate the electrocatalytic activity of the electrodes. The obtained nanomaterials can be used for the construction of chemical energy sources with high specific characteristics.
How to Cite:
Lebedeva M.V., Antropov A.P., Ragutkin A.V., Yashtulov N.A., (2020), PLATINUM NANOELECTROCATALYSTS FOR HYDROGEN-AIR ENERGY SOURCES. Computational Nanotechnology, 1 => 26-29.
Reference list:
Ozoemena K.I., Chen S. Nanomaterials for fuel cell catalysis. Springer, 2016. 583 p.
YAshtulov N.A., Lebedeva M.V. Vodorodnaya energetika vozobnovlyaemykh istochnikov toka // Rossiyskiy tekhnologicheskiy zhurnal. 2017. № 5. S. 58-73.
Sode A., Ingle N.J.C., McCormick M. Controlling the deposition of Pt-nanoparticles within the surface region of Nafion. Journal of Membrane Science. 2011. Vol. 376. No. 1-2. Pr. 162-169.
Kayarkatte M.K., Delikaya ., Roth C. Polyacrylic acid-Nafion composites as stable catalyst support in PEM fuel cell electrodes. Materials Today Communications. 2018. Vol. 16. Pr. 8-13.
Ahmed M., Attard G.A., Wright E., Sharman J. Methanol and formic acid electrooxidation on Nafion modified Pd/Pt 111 : the role of anion specific adsorption in electrocatalytic activity. Catalysis Today. 2013. Vol. 202. Pp. 128-134.
Yang H.N., Lee D.C., Park S.H., Kim W.J. Preparation of Nafion/various Pt-containing SiO2 composite membranes sulfonated via different sources of sulfonic group and their application in self-humidifying PEMFC. Journal of Membrane Science. 2013. Vol. 443. Pp. 210-218.
Hasanabadi N., Ghaffarian S.R., Hasani-Sadrabadi M.M. Nafionbased magnetically aligned nanocomposite proton exchange membranes for direct methanol fuel cells. Solid State Ionics. 2013. Vol. 232. Pp. 58-67.
Yashtulov N.A., Lebedeva M.V., Patrikeev L.N., Zaitcev N.K. New polymergraphene nanocomposite electrodes with platinum-palladium nanoparticles for chemical power sources. eXPRESS Polymer Letters. 2019. Vol. 13. No. 8. Pp. 739-748.
YAshtulov N.A., Lebedeva M.V., Ragutkin A.V., Zaytsev N.K. Elektrodnye materialy na osnove poristogo kremniya s nanochastitsami platiny dlya khimicheskikh istochnikov toka // ZHurnal prikladnoy khimii. 2018. № 91. S. 232-237.
Hwang M., Elabd Y.A. Impact of ionomer resistance in nanofibernanoparticle electrodes for ultra-low platinum fuel cells. International Journal of Hydrogen Energy. 2019. Vol. 44. No. 12. Pp. 6245-6256.
Kulikovsky A. The effect of Nafion film on the cathode catalyst layer performance in a low-Pt PEM fuel cell. Electrochemistry Communications. 2019. Vol. 103. Pp. 61-65.
Kim T.-H., Yoo J.H., Maiyalagan T., Yi S.-C. Influence of the Nafion agglomerate morphology on the water-uptake behavior and fuel cell performance in the proton exchange membrane fuel cells. Applied Surface Science. 2019. Vol. 481. Pp. 777-784.
YAshtulov N.A., Lebedeva M.V. Vodorodnaya energetika vozobnovlyaemykh istochnikov toka // Rossiyskiy tekhnologicheskiy zhurnal. 2017. № 5. S. 58-73.
Sode A., Ingle N.J.C., McCormick M. Controlling the deposition of Pt-nanoparticles within the surface region of Nafion. Journal of Membrane Science. 2011. Vol. 376. No. 1-2. Pr. 162-169.
Kayarkatte M.K., Delikaya ., Roth C. Polyacrylic acid-Nafion composites as stable catalyst support in PEM fuel cell electrodes. Materials Today Communications. 2018. Vol. 16. Pr. 8-13.
Ahmed M., Attard G.A., Wright E., Sharman J. Methanol and formic acid electrooxidation on Nafion modified Pd/Pt 111 : the role of anion specific adsorption in electrocatalytic activity. Catalysis Today. 2013. Vol. 202. Pp. 128-134.
Yang H.N., Lee D.C., Park S.H., Kim W.J. Preparation of Nafion/various Pt-containing SiO2 composite membranes sulfonated via different sources of sulfonic group and their application in self-humidifying PEMFC. Journal of Membrane Science. 2013. Vol. 443. Pp. 210-218.
Hasanabadi N., Ghaffarian S.R., Hasani-Sadrabadi M.M. Nafionbased magnetically aligned nanocomposite proton exchange membranes for direct methanol fuel cells. Solid State Ionics. 2013. Vol. 232. Pp. 58-67.
Yashtulov N.A., Lebedeva M.V., Patrikeev L.N., Zaitcev N.K. New polymergraphene nanocomposite electrodes with platinum-palladium nanoparticles for chemical power sources. eXPRESS Polymer Letters. 2019. Vol. 13. No. 8. Pp. 739-748.
YAshtulov N.A., Lebedeva M.V., Ragutkin A.V., Zaytsev N.K. Elektrodnye materialy na osnove poristogo kremniya s nanochastitsami platiny dlya khimicheskikh istochnikov toka // ZHurnal prikladnoy khimii. 2018. № 91. S. 232-237.
Hwang M., Elabd Y.A. Impact of ionomer resistance in nanofibernanoparticle electrodes for ultra-low platinum fuel cells. International Journal of Hydrogen Energy. 2019. Vol. 44. No. 12. Pp. 6245-6256.
Kulikovsky A. The effect of Nafion film on the cathode catalyst layer performance in a low-Pt PEM fuel cell. Electrochemistry Communications. 2019. Vol. 103. Pp. 61-65.
Kim T.-H., Yoo J.H., Maiyalagan T., Yi S.-C. Influence of the Nafion agglomerate morphology on the water-uptake behavior and fuel cell performance in the proton exchange membrane fuel cells. Applied Surface Science. 2019. Vol. 481. Pp. 777-784.
Keywords:
platinum nanoparticles, volt- and watt-ampere characteristics, current density, specific power.
Related Articles
Power. Power stations on the basis of renewable energy. Pages: 56-59 DOI: 10.33693/2313-223X-2019-6-4-56-59 Issue №15743
DEVELOPMENT OF MEMBRANE-ELECTRODE ASSEMBLIES PROTOTYPES BASED PLATINUM NANOCOMPOSITES FOR ENERGY SOURCES
platinum nanoparticles
volt- and watt-ampere characteristics
current density
specific power
Show more