PROSPECTS OF APPLICATION OF POLYMER-CERAMIC COMPOSITE IN THE PRODUCTION OF MICROALGAE
( Pp. 44-48)
More about authors
Rakhimov Rustam Kh.
Doctor of Engineering; Head at the Laboratory No. 1; Institute of Materials Science of the SPA “Physics-Sun” of the Academy of Sciences of the Republic of Uzbekistan; Institute of Renewable Energy Sources; @yandex.com
Institute of Materials Science of the SPA “Physics-Sun” of the Academy of Science of Uzbekistan
Tashkent, Republic of Uzbekistan Peter John doktor tehnicheskih nauk, doktor ekonomicheskih nauk; direktor
RPE InfraTherm GmbH Rakhimov Murod R. junior researcher at the Laboratory No. 1; Institute of Materials Science of the Academy of Science of Uzbekistan; Tashkent, Republic of Uzbekistan@yandex.com Yermakov Vladimir P. senior research at the Laboratory No. 1; Institute of Materials Science of the Academy of Science of Uzbekistan; @uzsci.net
Institute of Renewable Energy Sources
Tashkent, Republic of Uzbekistan
Institute of Materials Science of the SPA “Physics-Sun” of the Academy of Science of Uzbekistan
Tashkent, Republic of Uzbekistan Peter John doktor tehnicheskih nauk, doktor ekonomicheskih nauk; direktor
RPE InfraTherm GmbH Rakhimov Murod R. junior researcher at the Laboratory No. 1; Institute of Materials Science of the Academy of Science of Uzbekistan; Tashkent, Republic of Uzbekistan@yandex.com Yermakov Vladimir P. senior research at the Laboratory No. 1; Institute of Materials Science of the Academy of Science of Uzbekistan; @uzsci.net
Institute of Renewable Energy Sources
Tashkent, Republic of Uzbekistan
Abstract:
The article is devoted to the consideration of the possibility of using a film-ceramic composite based on functional ceramics and polyethylene film in increasing the efficiency of microalgae production. The main advantages of the composite relative to the traditional method arepresented.
How to Cite:
Rakhimov R.K., Peter J.., Rakhimov M.R., Yermakov V.P., (2019), PROSPECTS OF APPLICATION OF POLYMER-CERAMIC COMPOSITE IN THE PRODUCTION OF MICROALGAE. Computational Nanotechnology, 4 => 44-48.
Reference list:
http://www.cleandex.ru/articles/2016/01/19/aglae-biofuels
http://il4u.org.il/blog/about-israel/science-technology/energiya-budushhego-goryuchee-iz-zelenyx-vodoroslej
https://en.ppt-online.org/266206
Krichevsky G.E. Chemical technology of textile materials: Textbook for universities in 3 volumes.Vol. 1. Moscow: MSU Publishing House, 2000.
Krichevsky G.E. Physico-chemical bases of application of active dyes. Light industry Publishing House, 1977
Demirbas A. Use of algae as biofuel sources. Energy Conversion and Management. December 2010. Vol. 51. Is. 12.
Shaishow Sh. et al. Biohydrogen from algae: fuel of the future. Int. Res. J. of Environment Sci. 2013. Vol. 2 (4). P. 44-47.
Singh J. Renewable and sustainability energy. Reviews. 2010. No. 14. P. 2596-2610.
Rakhimov R.H. Big solar furnace. Comp. nanotechnol. 2019. No. 2. P. 141-150.
Rakhimov R.H., Ermakov V.P., Rakhimov M.R. Phonon transformation mechanism in ceramic materials. Comp. nanotechnol. 2017. No. 4. P. 21-35.
Rakhimov R.H. Synthesis of functional ceramics on BSP and developments on its basis. Comp. nanotechnol. 2015. No. 3. P. 11-25.
Rakhimov R.Kh., Yermakov V.P., Rakhimov M.R., Yuldashev N.H., Ismailov K., Hatamov S.O. Features of synthesis of functional ceramics with a complex of the set properties by a radiation method. Part 3, Comp. nanotechnol. 2018. No. 2. P. 76-82.
https://mirznanii.com/a/324651-2/biografiya-i-nauchnaya-deyatelnost-yustusa-libikha-2
Rakhimov R.H., Ermakov V.P., Rakhimov M.R. Patent of RUz No. IAP04844, priority date 24.08.2011.
http://il4u.org.il/blog/about-israel/science-technology/energiya-budushhego-goryuchee-iz-zelenyx-vodoroslej
https://en.ppt-online.org/266206
Krichevsky G.E. Chemical technology of textile materials: Textbook for universities in 3 volumes.Vol. 1. Moscow: MSU Publishing House, 2000.
Krichevsky G.E. Physico-chemical bases of application of active dyes. Light industry Publishing House, 1977
Demirbas A. Use of algae as biofuel sources. Energy Conversion and Management. December 2010. Vol. 51. Is. 12.
Shaishow Sh. et al. Biohydrogen from algae: fuel of the future. Int. Res. J. of Environment Sci. 2013. Vol. 2 (4). P. 44-47.
Singh J. Renewable and sustainability energy. Reviews. 2010. No. 14. P. 2596-2610.
Rakhimov R.H. Big solar furnace. Comp. nanotechnol. 2019. No. 2. P. 141-150.
Rakhimov R.H., Ermakov V.P., Rakhimov M.R. Phonon transformation mechanism in ceramic materials. Comp. nanotechnol. 2017. No. 4. P. 21-35.
Rakhimov R.H. Synthesis of functional ceramics on BSP and developments on its basis. Comp. nanotechnol. 2015. No. 3. P. 11-25.
Rakhimov R.Kh., Yermakov V.P., Rakhimov M.R., Yuldashev N.H., Ismailov K., Hatamov S.O. Features of synthesis of functional ceramics with a complex of the set properties by a radiation method. Part 3, Comp. nanotechnol. 2018. No. 2. P. 76-82.
https://mirznanii.com/a/324651-2/biografiya-i-nauchnaya-deyatelnost-yustusa-libikha-2
Rakhimov R.H., Ermakov V.P., Rakhimov M.R. Patent of RUz No. IAP04844, priority date 24.08.2011.
Keywords:
film-ceramic composite, functional ceramics, microalgae, biofuels, spectrum converters, pulsed infrared radiation.
Related Articles
Nanotechnology Pages: 11-25 DOI: 10.33693/2313-223X-2023-10-3-11-25 Issue №23683
Prospects of Solar Energy: The Role of Modern Solar Technologies in the Production of Hydrogen
solar energy
hydrogen
alternative energy source
economic inefficiency
profitability
Show more
Nanotechnology and nanomaterials Pages: 60-67 DOI: 10.33693/2313-223X-2022-9-3-60-67 Issue №21873
Development of a Method for Obtaining Ceramic Nanocomposites Using Sol-gel Technology Elements to Create Inclusions of Amorphous Phases with a Composition Similar to the Target Crystalline Ceramic Matrix
functional ceramics
pulsed radiation
gel-sol technology
mechanochemistry
solar furnace
Show more
Complex power systems Pages: 101-137 DOI: 10.33693/2313-223X-2019-6-2-101-137 Issue №15585
GENERATION AND PROPERTIES OF INFRARED RADIATION
Electromagnetic radiation
quantum theory
electronic transitions
emitters
spectrum converters
Show more
8. PLASMA, HIGH FREQUENCY, MICROWAVE AND LASER TECHNOLOGIES Pages: 75-134 Issue №9439
RESONANCE THERAPY. CERAMIC MATERIALS AND METHODS OF THEIR APPLICATION IN MEDICINE
Functional ceramics
impulsive radiation
range converters
gall bladder
liver
Show more
ENGINEERING TECHNOLOGIES. NUCLEAR TECHNOLOGY Pages: 129-131 Issue №7537
Possibility of use of functional ceramics for synthesis of complex connections
neutron
gadolinium
Bor
complex compounds
pulsed radiation
Show more
7. RESULTS OF EXPERIMENTAL STUDIES Pages: 64-90 Issue №10450
FUNCTIONAL CERAMICS AND ITS APPLICATION.A NEW LOOK AT AN OLD DISEASE.PART 1. DIABETES, OBESITY, HYPERTENSION
functional ceramics
pulsed radiation
spectrum converters
obesity
hypertension
Show more
7. RESULTS OF EXPERIMENTAL STUDIES Pages: 59-63 Issue №10450
THE RESULTS OF EXPERIMENTAL STUDIES OF THE EMITTERS BASED ON FUNCTIONAL CERAMICS K-SERIES
functional ceramics
impulsive radiation
spectrum converters
spleen
liver
Show more
Development of Functional Nanomaterials Based on Nanoparticles and Polymer Nanostructures Pages: 132-138 DOI: 10.33693/2313-223X-2022-9-1-132-138 Issue №20643
Investigation of a Film-ceramic Composite in a Solar Cell
functional ceramics
pulsed radiation
spectrum converters
polyethylene
polyethylene-ceramic composite
Show more
Development of functional nanomaterials based on nanoparticles and polymer nanostructures Pages: 84-94 DOI: 10.33693/2313-223X-2021-8-1-84-94 Issue №18588
Application of functional ceramics in sterilization processes
Sterilization
viruses
bacterial spores
functional ceramics
pulsed radiation
Show more
Nanotechnology and Nanomaterials Pages: 60-69 DOI: 10.33693/2313-223X-2023-10-2-60-69 Issue №23034
Prospects for the Use of Film-Ceramic Photocatalysts for the Cultivation of Microalgae
microalgae
photocatalysts
composite films
reactors
generation
Show more