PROSPECTS OF APPLICATION OF POLYMER-CERAMIC COMPOSITE IN THE PRODUCTION OF MICROALGAE
( Pp. 44-48)
More about authors
Rakhimov Rustam Kh.
Dr. Sci. (Eng.); Head, Laboratory No. 1; Institute of Materials Science of the Academy of Sciences of the Republic of Uzbekistan; Institute of Renewable Energy Sources; Tashkent, Republic of Uzbekistan
Институт материаловедения Академии наук Республики Узбекистан
г. Ташкент, Республика Узбекистан Peter John doktor tehnicheskih nauk, doktor ekonomicheskih nauk; direktor
RPE InfraTherm GmbH Rakhimov Murod R. junior researcher, Laboratory No. 1; Institute of Materials Science of the Academy of Science of Uzbekistan; Tashkent, Republic of Uzbekistan Yermakov Vladimir P. senior research, Laboratory No. 1; Institute of Materials Science of the Academy of Science of Uzbekistan; Tashkent, Republic of Uzbekistan
Институт материаловедения Академии наук Республики Узбекистан
г. Ташкент, Республика Узбекистан Peter John doktor tehnicheskih nauk, doktor ekonomicheskih nauk; direktor
RPE InfraTherm GmbH Rakhimov Murod R. junior researcher, Laboratory No. 1; Institute of Materials Science of the Academy of Science of Uzbekistan; Tashkent, Republic of Uzbekistan Yermakov Vladimir P. senior research, Laboratory No. 1; Institute of Materials Science of the Academy of Science of Uzbekistan; Tashkent, Republic of Uzbekistan
Abstract:
The article is devoted to the consideration of the possibility of using a film-ceramic composite based on functional ceramics and polyethylene film in increasing the efficiency of microalgae production. The main advantages of the composite relative to the traditional method arepresented.
How to Cite:
Rakhimov R.K., Peter J.., Rakhimov M.R., Yermakov V.P., (2019), PROSPECTS OF APPLICATION OF POLYMER-CERAMIC COMPOSITE IN THE PRODUCTION OF MICROALGAE. Computational Nanotechnology, 4 => 44-48.
Reference list:
http://www.cleandex.ru/articles/2016/01/19/aglae-biofuels
http://il4u.org.il/blog/about-israel/science-technology/energiya-budushhego-goryuchee-iz-zelenyx-vodoroslej
https://en.ppt-online.org/266206
Krichevsky G.E. Chemical technology of textile materials: Textbook for universities in 3 volumes.Vol. 1. Moscow: MSU Publishing House, 2000.
Krichevsky G.E. Physico-chemical bases of application of active dyes. Light industry Publishing House, 1977
Demirbas A. Use of algae as biofuel sources. Energy Conversion and Management. December 2010. Vol. 51. Is. 12.
Shaishow Sh. et al. Biohydrogen from algae: fuel of the future. Int. Res. J. of Environment Sci. 2013. Vol. 2 (4). P. 44-47.
Singh J. Renewable and sustainability energy. Reviews. 2010. No. 14. P. 2596-2610.
Rakhimov R.H. Big solar furnace. Comp. nanotechnol. 2019. No. 2. P. 141-150.
Rakhimov R.H., Ermakov V.P., Rakhimov M.R. Phonon transformation mechanism in ceramic materials. Comp. nanotechnol. 2017. No. 4. P. 21-35.
Rakhimov R.H. Synthesis of functional ceramics on BSP and developments on its basis. Comp. nanotechnol. 2015. No. 3. P. 11-25.
Rakhimov R.Kh., Yermakov V.P., Rakhimov M.R., Yuldashev N.H., Ismailov K., Hatamov S.O. Features of synthesis of functional ceramics with a complex of the set properties by a radiation method. Part 3, Comp. nanotechnol. 2018. No. 2. P. 76-82.
https://mirznanii.com/a/324651-2/biografiya-i-nauchnaya-deyatelnost-yustusa-libikha-2
Rakhimov R.H., Ermakov V.P., Rakhimov M.R. Patent of RUz No. IAP04844, priority date 24.08.2011.
http://il4u.org.il/blog/about-israel/science-technology/energiya-budushhego-goryuchee-iz-zelenyx-vodoroslej
https://en.ppt-online.org/266206
Krichevsky G.E. Chemical technology of textile materials: Textbook for universities in 3 volumes.Vol. 1. Moscow: MSU Publishing House, 2000.
Krichevsky G.E. Physico-chemical bases of application of active dyes. Light industry Publishing House, 1977
Demirbas A. Use of algae as biofuel sources. Energy Conversion and Management. December 2010. Vol. 51. Is. 12.
Shaishow Sh. et al. Biohydrogen from algae: fuel of the future. Int. Res. J. of Environment Sci. 2013. Vol. 2 (4). P. 44-47.
Singh J. Renewable and sustainability energy. Reviews. 2010. No. 14. P. 2596-2610.
Rakhimov R.H. Big solar furnace. Comp. nanotechnol. 2019. No. 2. P. 141-150.
Rakhimov R.H., Ermakov V.P., Rakhimov M.R. Phonon transformation mechanism in ceramic materials. Comp. nanotechnol. 2017. No. 4. P. 21-35.
Rakhimov R.H. Synthesis of functional ceramics on BSP and developments on its basis. Comp. nanotechnol. 2015. No. 3. P. 11-25.
Rakhimov R.Kh., Yermakov V.P., Rakhimov M.R., Yuldashev N.H., Ismailov K., Hatamov S.O. Features of synthesis of functional ceramics with a complex of the set properties by a radiation method. Part 3, Comp. nanotechnol. 2018. No. 2. P. 76-82.
https://mirznanii.com/a/324651-2/biografiya-i-nauchnaya-deyatelnost-yustusa-libikha-2
Rakhimov R.H., Ermakov V.P., Rakhimov M.R. Patent of RUz No. IAP04844, priority date 24.08.2011.
Keywords:
film-ceramic composite, functional ceramics, microalgae, biofuels, spectrum converters, pulsed infrared radiation.
Related Articles
Nanotechnology Pages: 11-25 DOI: 10.33693/2313-223X-2023-10-3-11-25 Issue №23683
Prospects of Solar Energy: The Role of Modern Solar Technologies in the Production of Hydrogen
solar energy
hydrogen
alternative energy source
economic inefficiency
profitability
Show more
ENERGY UNITS BASED ON RENEWABLE KINDS OF ENERGY Pages: 11-18 DOI: 10.33693/2313-223X-2020-7-1-11-14 Issue №16112
Endangered health - opportunity with efficient innovations
functional ceramics
impulse
climate
global warming
convection
Show more
1. SCIENTIFIC SCHOOL OF PROFESSOR RAHIMOV R. H. Pages: 6-34 Issue №7894
PART 6. FEATURES OF SYNTHESIS OF FUNCTIONAL CERAMICS WITH A COMPLEX OF THE SET PROPERTIES BY A RADIATION METHOD
functional ceramics
pulsed radiation
spectrum converters
phytochrome
enzymes
Show more
Nanotechnology Pages: 26-34 DOI: 10.33693/2313-223X-2023-10-3-26-34 Issue №23683
A POSSIBLE MECHANISM OF THE OPTICAL QUANTUM TUNNELING EFFECT IN PHOTOCATALYSTS BASED ON NANOSTRUCTURED FUNCTIONAL CERAMICS
tunneling effect
functional ceramics
quantum electrodynamics
phonon
photon
Show more
PLASMA, HIGH FREQUENCY, MICROWAVE AND LASER TECHNOLOGIES Pages: 66-76 Issue №7537
Features of synthesis of functional ceramics with a complex of the set properties by a radiation method. Part 3
film-ceramic composite
functional ceramics
active microfly-tion
three-layer composite plastic film
heated greenhouses and polytunnels
Show more
PLASMA, HIGH FREQUENCY, MICROWAVE AND LASER TECHNOLOGIES Pages: 32-135 Issue №8242
PART 8. FEATURES OF SYNTHESIS OF FUNCTIONAL CERAMICS WITH THE COMPLEX OF THE SET PROPERTIES BY THE RADIATION METHOD. BASES OF THE THEORY OF RESONANT THERAPY BY R. RAKHIMOV'S (INFRA R METHOD) METHOD
functional ceramics
pulsed radiation
spectrum converters
gallbladder
liver
Show more
2. NANOSTRUCTURED MATERIALS Pages: 35-39 Issue №6518
POSSIBILITIES OF USE OF CERAMIC MATERIALS IN POWER- AND RESOURCE-SAVING
friction
nanostructures
the friction pair.
vibration
power consumption
Show more
Development of Functional Nanomaterials Based on Nanoparticles and Polymer Nanostructures Pages: 67-72 DOI: 10.33693/2313-223X-2022-9-2-67-72 Issue №21224
Capabilities of Polyethylene-ceramic Composite in Comparison with Polyethylene Film in Real Operation Conditions
functional ceramics
energy conversion
infrared radiation
film-ceramic composite
deserts
Show more
PLASMA, HIGH FREQUENCY, MICROWAVE AND LASER TECHNOLOGIES Pages: 81-93 Issue №7537
Features of synthesis of functional ceramics with a complex of the set properties by a radiation method. Part 5. Mechanism of generation of impulses functional ceramics
ceramic materials
functional ceramics
the activation energy
semiconductors
infrared converters
Show more
Nanotechnology and Nanomaterials Pages: 60-69 DOI: 10.33693/2313-223X-2023-10-2-60-69 Issue №23034
Prospects for the Use of Film-Ceramic Photocatalysts for the Cultivation of Microalgae
microalgae
photocatalysts
composite films
reactors
generation
Show more