PROSPECTS OF APPLICATION OF POLYMER-CERAMIC COMPOSITE IN THE PRODUCTION OF MICROALGAE
( Pp. 44-48)

More about authors
Rakhimov Rustam Kh. Dr. Sci. (Eng.); Head at the Laboratory No. 1
Institute of Materials Science of the SPA “Physics-Sun” of the Academy of Sciences of the Republic of Uzbekistan
Tashkent, Republic of Uzbekistan Peter John doktor tehnicheskih nauk, doktor ekonomicheskih nauk; direktor
RPE InfraTherm GmbH Rakhimov Murod R. research at the Laboratory No. 1
Institute of Materials Science of the SPA “Physics-Sun” of the Academy of Science of Uzbekistan
Tashkent, Republic of Uzbekistan Yermakov Vladimir P. senior research at the Laboratory No. 1
Institute of Materials Science of the SPA “Physics-Sun” of the Academy of Science of Uzbekistan
Tashkent, Republic of Uzbekistan
For read the full article, please, register or log in
Abstract:
The article is devoted to the consideration of the possibility of using a film-ceramic composite based on functional ceramics and polyethylene film in increasing the efficiency of microalgae production. The main advantages of the composite relative to the traditional method arepresented.
How to Cite:
Rakhimov R.K., Peter J.., Rakhimov M.R., Yermakov V.P., (2019), PROSPECTS OF APPLICATION OF POLYMER-CERAMIC COMPOSITE IN THE PRODUCTION OF MICROALGAE. Computational Nanotechnology, 4 => 44-48. DOI: 10.33693/2313-223X-2019-6-4-44-48
Reference list:
http://www.cleandex.ru/articles/2016/01/19/aglae-biofuels
http://il4u.org.il/blog/about-israel/science-technology/energiya-budushhego-goryuchee-iz-zelenyx-vodoroslej
https://en.ppt-online.org/266206
Krichevsky G.E. Chemical technology of textile materials: Textbook for universities in 3 volumes.Vol. 1. Moscow: MSU Publishing House, 2000.
Krichevsky G.E. Physico-chemical bases of application of active dyes. Light industry Publishing House, 1977
Demirbas A. Use of algae as biofuel sources. Energy Conversion and Management. December 2010. Vol. 51. Is. 12.
Shaishow Sh. et al. Biohydrogen from algae: fuel of the future. Int. Res. J. of Environment Sci. 2013. Vol. 2 (4). P. 44-47.
Singh J. Renewable and sustainability energy. Reviews. 2010. No. 14. P. 2596-2610.
Rakhimov R.H. Big solar furnace. Comp. nanotechnol. 2019. No. 2. P. 141-150.
Rakhimov R.H., Ermakov V.P., Rakhimov M.R. Phonon transformation mechanism in ceramic materials. Comp. nanotechnol. 2017. No. 4. P. 21-35.
Rakhimov R.H. Synthesis of functional ceramics on BSP and developments on its basis. Comp. nanotechnol. 2015. No. 3. P. 11-25.
Rakhimov R.Kh., Yermakov V.P., Rakhimov M.R., Yuldashev N.H., Ismailov K., Hatamov S.O. Features of synthesis of functional ceramics with a complex of the set properties by a radiation method. Part 3, Comp. nanotechnol. 2018. No. 2. P. 76-82.
https://mirznanii.com/a/324651-2/biografiya-i-nauchnaya-deyatelnost-yustusa-libikha-2
Rakhimov R.H., Ermakov V.P., Rakhimov M.R. Patent of RUz No. IAP04844, priority date 24.08.2011.
Keywords:
film-ceramic composite, functional ceramics, microalgae, biofuels, spectrum converters, pulsed infrared radiation.


Related Articles

7. RESULTS OF EXPERIMENTAL STUDIES Pages: 64-90 Issue №10450
FUNCTIONAL CERAMICS AND ITS APPLICATION.A NEW LOOK AT AN OLD DISEASE.PART 1. DIABETES, OBESITY, HYPERTENSION
functional ceramics pulsed radiation spectrum converters obesity hypertension
Show more
7. RESULTS OF EXPERIMENTAL STUDIES Pages: 59-63 Issue №10450
THE RESULTS OF EXPERIMENTAL STUDIES OF THE EMITTERS BASED ON FUNCTIONAL CERAMICS K-SERIES
functional ceramics impulsive radiation spectrum converters spleen liver
Show more
Development of Functional Nanomaterials Based on Nanoparticles and Polymer Nanostructures Pages: 132-138 DOI: 10.33693/2313-223X-2022-9-1-132-138 Issue №20643
Investigation of a Film-ceramic Composite in a Solar Cell
functional ceramics pulsed radiation spectrum converters polyethylene polyethylene-ceramic composite
Show more
ENGINEERING TECHNOLOGIES. NUCLEAR TECHNOLOGY Pages: 129-131 Issue №7537
Possibility of use of functional ceramics for synthesis of complex connections
neutron gadolinium Bor complex compounds pulsed radiation
Show more
8. PLASMA, HIGH FREQUENCY, MICROWAVE AND LASER TECHNOLOGIES Pages: 75-134 Issue №9439
RESONANCE THERAPY. CERAMIC MATERIALS AND METHODS OF THEIR APPLICATION IN MEDICINE
Functional ceramics impulsive radiation range converters gall bladder liver
Show more
5.2.6. MANAGEMENT Pages: 279-284 Issue №20181
Prospects for Wide Application of IR.C Technology in Germany
functional ceramics energy conversion infrared radiation pulsed radiation ecology
Show more
Complex power systems Pages: 101-137 DOI: 10.33693/2313-223X-2019-6-2-101-137 Issue №15585
GENERATION AND PROPERTIES OF INFRARED RADIATION
Electromagnetic radiation quantum theory electronic transitions emitters spectrum converters
Show more
Development of functional nanomaterials based on nanoparticles and polymer nanostructures Pages: 84-94 DOI: 10.33693/2313-223X-2021-8-1-84-94 Issue №18588
Application of functional ceramics in sterilization processes
Sterilization viruses bacterial spores functional ceramics pulsed radiation
Show more
Nanotechnology and nanomaterials Pages: 60-67 DOI: 10.33693/2313-223X-2022-9-3-60-67 Issue №21873
Development of a Method for Obtaining Ceramic Nanocomposites Using Sol-gel Technology Elements to Create Inclusions of Amorphous Phases with a Composition Similar to the Target Crystalline Ceramic Matrix
functional ceramics pulsed radiation gel-sol technology mechanochemistry solar furnace
Show more
PLASMA, HIGH FREQUENCY, MICROWAVE AND LASER TECHNOLOGIES Pages: 66-76 Issue №7537
Features of synthesis of functional ceramics with a complex of the set properties by a radiation method. Part 3
film-ceramic composite functional ceramics active microfly-tion three-layer composite plastic film heated greenhouses and polytunnels
Show more